A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Blondel, A.P.

Paper Title Page
WEPLS006 Requirements for Accelerator-based Neutrino Facilities 2406
 
  • A.P. Blondel
    DPNC, Genève
 
  Classification: 1-A18, 3-A09, 4-A15, 6-T03 (non exhaustive). The study of neutrino oscillations offers promises of great discoveries including leptonic CP violation. The experimental programs that are under discussion pose considerable challenges to accelerator builders. Extremely high intensities are needed for classical on- and off-axis pion decay beams; novel ideas such as beta-beams and muon decay beams have been invented and are being studied. The experiments to be performed require outstanding predictability and monitoring of the neutrino flux. The challenges will be reviewed and a list of requirements will be proposed.  
THPCH164 Progress and Status of the MICE Project 3176
 
  • A.P. Blondel
    DPNC, Genève
  • P. Drumm
    CCLRC/RAL/ISIS, Chilton, Didcot, Oxon
 
  The design of a Neutrino Factory (NF) has been the subject of several physics studies. For a NF based on a stored high energy muon beam, a potential key technology that has a significant impact on its cost and practicality is the ability to cool rapidly the muon beam prior to acceleration. The muon ionisation cooling experiment (MICE), currently being constructed at the Rutherford Appleton Laboratory (UK), is a demonstration of emittance cooling in a linear cooling channel. A new muon beam line and the basic infrastructure for MICE are funded, and a muon beam is under construction with an expected availability in spring 2007. The experiment will be methodically assembled over the following few years to bring the beam through RF accelerating cavities and liquid hydrogen absorbers and confined by a solenoidal magnetic field. The emittance of the beam before and after the cooling channel is measured in tracking spectrometers. The current status of the beam line and infrastructure build and of the components of MICE is presented.