A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Aulenbacher, K.

Paper Title Page
MOPLS116 Status Report on the Harmonic Double-sided Microtron of MAMI C 834
 
  • A. Jankowiak, K. Aulenbacher, O. Chubarov, M. Dehn, H. Euteneuer, F.F. Fichtner, F. Hagenbuck, R.H. Herr, P. Jennewein, K.-H. Kaiser, W.K. Klag, H.J. Kreidel, U.L. Ludwig-Mertin, J.R. Röthgen, S.S. Schumann, G.S. Stephan, V. Tioukine
    IKP, Mainz
 
  The Mainz Mikrotron MAMI is a cascade of three racetrack microtrons, delivering since 1991 a high quality 855MeV, 100muA cw electron beam for nuclear and radiation physics experiments. An energy upgrade of this machine to 1.5GeV by adding a Harmonic Double-Sided Microtron (HDSM)* as a fourth stage is well under way. Here we give a review of the experiences gained during fabrication and testing of the main components of the HDSM and report the status of its construction. Initial operation of the machine is expected for the first half of 2006. After a period of commissioning in diagnostic pulse mode with low beam power (10ns, high intensity bunch trains with a repetition rate of max. 10kHz), soon the first nuclear physics experiments will be started.

*A. Jankowiak et al. "Design and Status of the 1.5 GeV-Harmonic Double Sided Microtron for MAMI", Proceedings EPAC2002, Paris, p. 1085.

 
THPCH161 Status of the Polarized Electron Gun at the S-DALINAC 3173
 
  • C. Heßler, M. Brunken, J. Enders, H.-D. Gräf, G. Iancu, Y. Poltoratska, M. Roth
    TU Darmstadt, Darmstadt
  • W. Ackermann, W.F.O. Müller, N. Somjit, B. Steiner, T. Weiland
    TEMF, Darmstadt
  • K. Aulenbacher
    IKP, Mainz
 
  Aiming at an extension of the experimenting capabilities for nuclear structure physics at low momentum transfer at the superconducting Darmstadt electron linear accelerator S-DALINAC, a polarized electron gun is being constructed. The new injector will be able to supply the S-DALINAC with 100 keV polarized electrons and should complement the present, unpolarized thermionic source. The design requirements are a degree of polarization of at least 80%, a mean current intensity of 0.06 mA and a 3 GHz cw structure. The basic design of the gun was adapted from the source of polarized electrons at MAMI, Mainz*, and optimized in various simulations. The active material is a strained layer GaAs crystal which is exposed to an 830 nm pulsed laser beam. We report on the status of the polarized source, the preparation setup and a test beam line.

*K. Aulenbacher et al., Nucl. Instrum. Meth. A 391, 498 (1997).