A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Arakida, Y.

Paper Title Page
MOPCH119 Present Status of the Induction Synchrotron Experiment in the KEK PS 324
 
  • K. Takayama, Y. Arakida, T. Iwashita, T. Kono, E. Nakamura, Y. Shimosaki, M.J. Shirakata, T. Sueno, K. Torikai
    KEK, Ibaraki
  • K. Otsuka
    Nippon Advanced Technology Co. Ltd., Ibaraki-prefecture
 
  A concept of the induction synchrotron, which was proposed by Takayama and Kishiro in 2000, has been demonstrated by using the KEK PS since 2004. A proton bunch trapped in the RF bucket was accelerated with the induction acceleration devices from 500 MeV to 8 GeV*, which was energized with the newly developed switching power supply. This form of the KEK PS is something like a hybrid synchrotron. In addition, the injected proton bunch was confined by the step barrier-voltages at the injection energy of 500MeV**, which were generated with the same induction acceleration device. Then a concept of the induction synchrotron that a proton bunch was captured by the barrier bucket and accelerated with the induction voltage is to be fully demonstrated.

*K. Takayama et al. "Observation of the Acceleration of a Single Bunch by Using the Induction Device in the KEK Proton Synchrotron", Phys. Rev. Lett., 94, 144801 (2005).**K. Torikai et al. "Acceleration and Confinement of a Proton Bunch with the Induction Acceleration System in the KEK Proton Synchrotron", submitted to Phys. Rev. ST-AB (2005), KEK-Preprint 2005-80 A, December 2005.

 
TUPLS028 An Irradiation System for Carbon Stripper Foils with 750 keV H- Beams 1550
 
  • A. Takagi, Y. Arakida, Z. Igarashi, K.I. Ikegami, C. Kubota, I. Sugai, Y. Takeda
    KEK, Ibaraki
  • S. Dairaku, N. Saito, A. Sato, K. Senzaki
    Kyoto University, Kyoto
  • Y. Irie
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken
 
  Carbon stripper foils of around 300 ug/cm2 will be used as a stripping of H-ion beam of the 3 GeV Rapid Cycling Synchrotron in the J-PARC. The foil should have a long lifetime with mechanically strong against high temperature of 1800K due to high-energy deposition by high intensity H-ion and circulating bunched proton beam irradiations. For this purpose, we have installed a new irradiation system using high intensity pulsed and dc H-beams of the KEK 750keV Cocksfoot-Walton accelerator. By adjusting the peak intensity and the pulse length of the hydrogen beams appropriately, the energy deposition becomes equivalent to that exerted by the incoming H- and the circulating beams at the injection process of the RCS. The new irradiation system and some preliminary results of the carbon stripper foil will be reported.  
THPCH094 Fully Digitized Synchronizing and Orbit Feed-back Control System in the KEK Induction Synchrotron 3012
 
  • K. Torikai, Y. Arakida, Y. Shimosaki, K. Takayama
    KEK, Ibaraki
 
  A concept of "Induction Synchrotron", where an extremely long bunch captured by the step barrier-voltages is accelerated with the induction accelerating voltage, is being to be fully demonstrated in the KEK 12GeV-PS for the first time*. Attractive applications of the induction synchrotron are such as higher intensity proton drivers, future high luminosity hadron colliders with superbunch, and arbitral-ion accelerators. Synchronization between the voltage-pulse generation and the beam circulation, accelerating voltage control, and beam-orbit control without beam-rf phase, which is analogous to Delta-R feedback in an RF synchrotron, are indispensable in the induction synchrotron. A fully digitized real-time pulse density and discrete timing control system with 1GHz DSPs has been newly developed. Notable characteristics of the control system, some of which are synchronization at 1MHz revolution frequency with 8ns timing accuracy, are explained in detail. Experimental results of the induction acceleration with the digital orbit controller are also presented in this paper.

*K. Torikai et al. "Acceleration and Confinement of a Proton Bunch with the Induction Acceleration System in the KEK Proton Synchrotron", submitted to Phys.Rev.ST-AB(2005), KEK-Preprint 2005-80.