A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Aiba, M.

Paper Title Page
TUPLS076 Beam Extraction of 150 MeV FFAG 1672
 
  • M. Aiba, Y. Mori, H. Nakayama, K. Okabe, Y. Sakamoto, A. Takagi
    KEK, Ibaraki
  • R. Taki
    GUAS/AS, Ibaraki
  • Y. Yonemura
    Kyushu University, Fukuoka
 
  A beam extraction from FFAG accelerator was performed for the first time at KEK 150MeV proton FFAG synchrotron. The purpose of 150MeV FFAG project is to establish a working prototype for various applications. The beam extraction is thus one of important goals. The extraction is based on fast extraction methode using kicker and pulse septum working at 100Hz. A rapid cycling is also our focus to take advantages of FFAG accelerator. Beam extraction experiment was successful under 100Hz operating. The details of experiment will be presented in this paper.  
WEPLS056 R&D Status of the High-intense Monochromatic Low-energy Muon Source: PRISM 2508
 
  • A. Sato, M. Aoki, Y. Arimoto, I. Itahashi, Y. Kuno, K. Kuriyama, T. Oki, T. Takayanagi, M. Yoshida
    Osaka University, Osaka
  • M. Aiba, C. Ohmori, T. Yokoi, K. Yoshimura
    KEK, Ibaraki
  • Y. Iwashita
    Kyoto ICR, Uji, Kyoto
  • S. Machida
    CCLRC/RAL/ASTeC, Chilton, Didcot, Oxon
  • Y. Mori
    KURRI, Osaka
 
  PRISM is a project of a future intense low-energy muon source, which combines monochromaticity and high purity. Its aimed intensity is about $1011-1012 muons per second. The muon beams will have a low kinetic energy of 20MeV so that it would be optimized for the stopped muon experiments such as searching the muon lepton flavor violating processes. PRISM consists of a pion capture section, a pion/muon transfer section and a phase rotation ssection. An FFAG is used as the phase rotator to achieve the monochromatic muon beams. This paper will describe design status of these sections as well as construction status of PRISM-FFAG.