A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Abreu, N.P.

 
Paper Title Page
TUPCH129 Conceptual Design of a 3rd Harmonic Cavity System for the LNLS Electron Storage Ring 1316
 
  • N.P. Abreu, O.R. Bagnato, R.H.A. Farias, M.J. Ferreira, C. Pardine, P.F. Tavares
    LNLS, Campinas
 
  The installation of a second RF cavity in the UVX electron storage ring at the Brazilian Synchrotron Light Laboratory (LNLS) at the end of 2003 brought about longitudinal instabilities driven by one of the HOMs of the new cavity. Even though the operational difficulties related to these unstable modes were successfully overcome by means of a combination of cavity tuning (using temperature and plunger adjustments) with phase modulation of the RF fields at the second harmonic of the synchrotron frequency, a more appropriate technique to avoid those problems is the use of higher harmonic cavities, which have the important advantage of providing damping of the longitudinal modes without increasing the energy spread, i.e., without compromising the longitudinal emittance. In this work we present the design of a passive higher harmonic cavity system optimized for operation at the LNLS storage ring. The parameters for a set of cavities as well as the analysis of some of the effects that they may introduce in the beam dynamics are presented. An overview of the technical aspects related to the project, construction and installation of the cavities in the storage ring is also presented.  
WEOFI02 RF Phase Modulation Studies at the LNLS Electron Storage Ring 1905
 
  • N.P. Abreu, R.H.A. Farias, P.F. Tavares
    LNLS, Campinas
 
  In this work we present a set of measurements of the effectiveness of RF phase modulation on the second harmonic of the RF frequency as a mechanism to damp longitudinal coupled-bunch instabilities. We also propose a theoretical model of the damping mechanism, in which the increase of the spread in synchrotron frequencies inside the bunches produced by phase modulation is responsible for damping the centroid dipolar coherent motion caused by an external excitation, which could be a Higher Order Mode (HOM) of the RF cavities driving the coupled bunch motion. We measured the coherent synchrotron oscillation damping of a single bunch under two circumstances, with and without phase modulation, and determined the amount of extra damping due to the modulation. With this experiment we could also measure the frequency of small oscillations around the stable islands formed by phase modulation and its behavior when the RF phase modulation amplitude and frequency are changed. We performed measurements of Beam Transfer Function (BTF) to observe the effects of phase modulation over the stable area for coherent oscillations and compared the results with a theoretical model.  
slides icon Transparencies