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Abstract 

Three problems have been considered in this paper: the 
development of Maxwell�s equations strict solution 
method to define the electromagnetic own values and own 
functions of the toroidal cavity; the radiation of the 
charged bunch rotating along the average radius, and, at 
last, the consideration of the case of a toroid filled with 
dielectric medium. The peculiarities of this radiation have 
been investigated as well. We suppose to consider further 
the case when toroid is filled with plasma-like disperse 
medium. 

INTRODUCTION 
Two methods to define the own electromagnetic 

oscillations in toroidal cavity were considered before: the 
uniform short wave asymptotic method of the own 
oscillations (USWA) and successive approximate method 
(SAM) based on the perturbation theory, both for large 
torus variables are strictly separated in eikonal equation 
for homogeneous toroidal modes. The first method 
(USWA) is based on the variables asymptotic separation 
in Helmholtz equation for toroidal cavity the toroidal 
inhomogeneous medium filled with. Using this strict 
solution for scalar fields one may construct an asymptotic 
solution for electromagnetic ones for large toroid using 
the method, developed in [1]. The second method (SAM) 
is based on the perturbation theory, developed in [6], 
using the small parameter 1<<Rr . Two sets of own 
frequencies were received using the analytical 
expressions, received by these two methods. In USWA 
method we use the classical toroidal system of 
coordinates ( )ϕστ ,, , where the surfaces of const=τ  
describe toroids, const=σ  - spheres and const=ϕ  - 
half planes and in SAM - the quasi-spherical one 
( )ϑϕ ,,r  [3]. The new original method to find a strict 
solution is considered as well [4]. 

USWA METHOD 
The USWA method gives the following equation for 

the E-modes ( 0≠
ϕ

E ) 
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 is the torus function [5], 

1ττ =  - toroid with perfect conducting walls and round  
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cross-section, ck ω= , where ω  is frequency of 
electromagnetic oscillations in toroid, parameter a  
describes the toroidal system of coordinates [6] and is 
connected with the torus radius 

0
r  and the axial circle 

radius R  defined as 
1

cthτaR = , 1sh
0

τar =  and 

2a2
0r

2R =− . The large toroid means that 1
1
>>τ  and 

aR ~ . It is difficult to define the values for own 
frequencies from equation (1) and to receive an analytical 
solution for this equation.  But for the large torus 
( 1<<Rr , or 1

1
>>τ ) we used uniform short wave 

asymptotics for the torus function ([1]). In this 
approximation the geometrical-optical beams form a 
caustic surface with the radius cr  in the torus, which isn�t 

a coaxial one to the main torus 
1
ττ = : 
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If mka > this caustic is placed in the torus and if mka <  
- is an external one, i.e. for these values no one mode will 
exist in toroid. We see that the number m  is limited by 
the value ka . This fact simplifies the calculations 
essentially. 

Dielectric filling in the torus is described here by the 

expression 1,
sh

cosch
=

−
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στ
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One may see that if ∞→τ , then 1→n , i.e. (3) 
describes an empty large torus.  
The synchrotron radiation field generated by rotating 
charged  particle  may be  defined  expanding  the  current 
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by the own functions of the toroid [1] 
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for the E-types of oscillations (Hϕ = 0), where 
( ) ( )2cos1

12 σ−nC - ultra-spherical functions (the polynoms 
of Gegenbauer) of 12 −n  order. 

We can approximate the torus function for 1>>ka  in 
this form: 
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We have shown that it is possible to define the own 

frequencies of toroidal cavity for given values of numbers 
n and m. At first for given n, one can define the 
coordinates of caustic surface from then replacing the 
latter in caustic equation one can define the k wave 
numbers according the values of m: 

 ( ) τ~2sh4122 −+= nmka . (7) 
One can see that during increasing of the value n the 
electromagnetic oscillations will approach to the walls of 
toroid. 

THE POSSIBILITY OF STRICT 
SOLUTION AND SAM METHOD 

We represent the electromagnetic fields ( )ϑϕ ,,, rHE  
in the form 
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in quasi-spherical system of coordinates ( )ϑϕ ,,r  [4]. 
Putting these fields in Maxwell�s equations one can 
express all components of fields by ( ),E r ϑϕ , i.e. one 
can show that E- and H- types of waves exist in the 
toroidal cavities. The component ( )ϑϕ ,rE satisfies the 
equation 
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Solving this equation by digital methods one can define 
the own electromagnetic oscillations in the toroidal 
cavity: 
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   for the E-types of waves. One can get similar equations 
for the H-types of waves [4]. In these equations 

ϑρ cos01−=h . 
Let�s use another approximate SAM method to define 

the own oscillations in the quasi-spherical system of 
coordinates ( , ,r ϕ ϑ ). The own frequencies are defined 
now in the form 

 ( ) .2
075.022

0
ρχω ++= mon

r

c
nm  (11) 

where 
R

r0
0 =ρ , 0r  is the radius of the cross-sections of 

toroidal cavity and R  is the average radius of the torus, 

n0χ  - is the n-th root of the zero order Bessel function 

and m  - azimuthal number. The first order correction 
stipulated by the torus curvature exists in the formula (11) 

in the form ( ) 2
075.02 ρ+m . 

The package FEMLAB gives possibility to solve the 
problem of eigen values and eigen functions digitally by 
finite element method (FEM). The toroidal cavity is 
represented here like a figure rotating round the axis Oz at 
the distance R. The wave equation is solved here in the 
cylindrical system of coordinates. When it is solved by 
the Dirichlet�s boundary conditions it is corresponding to 
the uniform modes of E-types. Let�s try to get the own 
frequencies for the toroid with parameters 30r cm=  and 

50r cm=  and cmR 10=  and compare with the 

frequencies defined by (11). 
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m /3 FEM

mf1  SAM
mf1  

1 3.87803 GHz 3.8794 GHz 
2 3.9675 GHz 3.9666 GHz 
3 4.11183 GHz 4.1078 GHz 
4 4.3048 GHz 4.2976 GHz 
5 4.53936 GHz 4.5301 GHz 
6 4.80838 GHz 4.7989 GHz  

 
m /5 FEM

mf1  SAM
mf1  

1 2.3872 GHz 2.3819 GHz 
2 2.53512 GHz 2.5214 GHz 
3 2.75795 GHz 2.7381 GHz 
4 3.03216 GHz 3.0155 GHz 
5 3.33821 GHz 3.3384 GHz 
6 5.66252 GHz 3.6949 GHz  

 
In  SAM  the radius of the caustic surface is defined as 

 .
k

n
cr =  (12) 

Comparing (12) with (2) we see that the difference 
between these two values is neglectible, if 

kamn <<>> ,1 . SAM method permits one to calculate 
the approximate values of the field in torus when 
radiating particle is moving along the axis of the toroid, 
existing there for a finite time and rotating in it at α  
angle. At Ω≤ αt  the transition radiation will be written 
down in the form of the expansion in series 
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and the synchrotron radiation-in the form 
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In fig. 1 there are shown the results of the calculation of 
radiation field ϕE  per unit charge in the empty toroid 
( 1=ε ). As one can see, the transition radiation is 
prevailing for the case of 1,243.00,10 === mK ρ . 

Thus, these formulae describe the transition radiation 
(effect of sudden acceleration) as well. Particle arises and 
makes some circles in toroid (angle α ) and then 
vanishes. 

 

 
Figure 1: Field qEϕ  and its components qtrEϕ  and 

qscEϕ  corresponding to transition and synchrotron 
radiations (8 circles in empty toroid). 

CONCLUSION 
Combining and comparing the results of methods 

USWA and SAM from one side and with method 
FEMLAB from other side which gives a possibility to 
define eigen frequencies digitally, one can talk about the 
completeness of the set of own functions defined 
asymptotically. The strict method developed in this work 
gives possibility to define the own frequencies of toroidal 
cavity independently. The coincidence of these results 
will prove the completeness of the set of own functions 
defined asymptotically as well. 

REFERENCES 
[1] E.D. Gazazyan. �Uniform Short Wave Asymptotics 

of Scalar and Electromagnetic Fields Based on the 
One-dimensional Standard Functions,� Preprint 
YerPhI-1092(55)88, Yerevan, 1988. 

[2] E.D. Gazazyan, V.G. Kocharyan, G.G. Oxuzyan, 
�Toroidal Cavities with the Rectangular and Circle 
Cross Section,� Preprint YerPhI-1145(22)89, 
Yerevan, 1989.  

[3] G. Korn, T. Korn, Mathematical Handbook, 
McGraw-Hill Book Company, 1968. 

[4] T.A. Harutyunyan, D.K. Kalantaryan, 
Electromagnetic Oscillations in the Toroidal Cavity, 
Contemporary Physics Armenian Ac. Sc. (in print). 

[5] M. Abramovits, I.A. Stegun, Handbook of 
Mathematical Functions, National Bureau of 
Standards, Applied Mathematics Series-55,  June 
1964. 

[6] T. Liley, B. Shnizer, R. Kiel, �Perturbation Theory 
Computation of Toroidal Uniform Modes within 
Empty Torus,� AEU, 1983,  vol. 37, p. 359-365. 

Proceedings of EPAC 2004, Lucerne, Switzerland

2465


