

Theorie Elektromagentischer Felder - EPAC 2004 <u> Thomas Lau</u> nstitut für

Particle-In-Cell Based Beam Dynamics Simulations

Thomas Lau, E. Gjonaj and T. Weiland

EPAC, Luzern, 5-9.07.2004

Technische Universität Darmstadt, Fachbereich Elektrotechnik und Informationstechnik Schloßgartenstr. 8, 64289 Darmstadt, Germany - URL: www.TEMF.de

- Motivation
- Finite Integration Technique
 - Non Conformal
 - Conformal
- Noise Reduction
 - Splitting Scheme
 - Dissipative Scheme
- Analytical Benchmark
- Simulations
- Conclusions

Motivation

- Finite Integration Technique
 - Non Conformal
 - Conformal
- Noise Reduction
 - Splitting Scheme
 - Dissipative Scheme
- Analytical Benchmark
- Simulations
- Conclusions

- Simulation of relativistic electron beams
- Bunch is much smaller than the geometry

Longitudinal Electric Field / MV/m

Motivation

- Finite Integration Technique
 - Non Conformal
 - Conformal
- Noise Reduction
 - Splitting Scheme
 - Dissipative Scheme
- Analytical Benchmark
- Simulations
- Conclusions

UNIVERSITÄT DARMSTADT

Maxwell-Grid-Equations (Weiland, 1977)

Integral Maxwell Equations:

$$\prod_{\partial A} \vec{E} \cdot d\vec{s} = -\frac{\partial}{\partial t} \iint_{A} \vec{B} \cdot d\vec{A}$$

$$\iint_{\partial A} \vec{H} \cdot d\vec{s} = \iint_{A} \left(\frac{\partial}{\partial t} \vec{D} + \vec{J} \right) \cdot d\vec{A}$$

$$\iint_{\partial V} \vec{B} \cdot d\vec{A} = 0$$

$$\iint_{\partial V} \vec{D} \cdot d\vec{A} = \iiint_{A} \partial V$$

 $\iint_{\partial V} \vec{D} \cdot d\vec{A} = \iiint_{V} \rho \ dV$

Description by finite field *fluxes* and *voltages*

Grid-Dual-Grid Discretization:

 $\begin{array}{l} G \to \mbox{ Primary grid} \\ \tilde{G} \to \mbox{ Dual (orthogonal) grid} \end{array}$

UNIVERSITÄT DARMSTADT

Maxwell-Grid-Equations (Weiland, 1977)

Integral Maxwell Equations:

FIT Equations:

 $+\hat{j}$

$$\oint_{\partial A} \vec{E} \cdot d\vec{s} = -\frac{\partial}{\partial t} \iint_{A} \vec{B} \cdot d\vec{A}$$

$$\oint_{\partial A} \vec{H} \cdot d\vec{s} = \iint_{A} \left(\frac{\partial}{\partial t} \vec{D} + \vec{J} \right) \cdot d\vec{A}$$

$$\iint_{\partial V} \vec{D} \cdot d\vec{A} = \iint_{V} \rho \, dV$$

$$\iint_{\partial V} \vec{B} \cdot d\vec{A} = 0$$

$$FIT \qquad \mathbf{S}\hat{\mathbf{b}} = 0$$

- <u>Exact</u> mapping in grid-space
- Material equations needed:

 $\hat{\hat{\mathbf{d}}} \rightarrow \hat{\mathbf{e}}, \hat{\hat{\mathbf{b}}} \rightarrow \hat{\mathbf{h}}$

7

UNIVERSITÄT DARMSTADT

Material Operators. Staircase FIT

UNIVERSITÄT DARMSTADT

Material Operators. Conformal FIT

 $\vec{D} = \varepsilon \vec{E} \qquad \Leftrightarrow \hat{\vec{\mathbf{d}}} = \mathbf{M}_{\varepsilon} \hat{\mathbf{e}}$ Linear material operators $\vec{H} = \mu \vec{B} \qquad \Leftrightarrow \hat{\mathbf{h}} = \mathbf{M}_{\mu} \hat{\vec{\mathbf{b}}}$ $\vec{J} = \sigma \vec{E} + \vec{J}_{s} \qquad \Leftrightarrow \hat{\vec{\mathbf{j}}} = \mathbf{M}_{\sigma} \hat{\mathbf{e}} + \hat{\vec{\mathbf{j}}}_{s}$ Constructed by discretization Approximation depends on material operators only **Conformal FIT** \mathcal{E}_2 \mathcal{E}_{2} $\left\{\mathbf{M}_{\varepsilon}\right\}_{mm}$ \mathcal{E}_1 \mathcal{E}_1 $\widehat{\overline{d}}_m \approx$ $\varepsilon \Box dA / \int ds$ Diagonal, positive matrices \hat{e}_m for Cartesian grids

- Motivation
- Finite Integration Technique
 Non Conformal
 - Conformal
- Noise Reduction
 - Splitting Scheme
 - Dissipative Scheme
- Analytical Benchmark
- Simulations
- Conclusions

TECHNISCHE UNIVERSITÄT DARMSTADT

Leap-Frog Scheme

$$\begin{pmatrix} \widehat{\mathbf{h}}^{(n+1)} \\ \widehat{\mathbf{e}}^{(n+3/2)} \end{pmatrix} = \begin{pmatrix} \mathbf{1} & -\Delta t \cdot \mathbf{M}_{\mu^{-1}} \mathbf{C} \\ \Delta t \cdot \mathbf{M}_{\varepsilon^{-1}} \widetilde{\mathbf{C}} & \mathbf{1} + \Delta t^2 \mathbf{M}_{\varepsilon^{-1}} \widetilde{\mathbf{C}} \mathbf{M}_{\mu^{-1}} \mathbf{C} \end{pmatrix} \begin{pmatrix} \widehat{\mathbf{h}}^{(n)} \\ \widehat{\mathbf{e}}^{(n+1/2)} \end{pmatrix} + \Delta t \begin{pmatrix} \mathbf{0} \\ \mathbf{M}_{\varepsilon^{-1}} \widetilde{\mathbf{j}}_{s} \end{pmatrix}$$

Discrete Phase Velocity

Transversal Current Adjustment (TCA)

- Introduces an artificial damping of short wavelengths
- Formulation as Curl Curl operator ensures that neither new electric nor new magnetic charges are created by the artificial damping term

Noise Reduction

Transversal Current Adjustment (TCA)

- Easy to implement
- Has a variable damping parameter
 - The optimal value is problem dependent
- Decreases the stability limit of the Leap-Frog method
 - The time step has to be reduced
- There is minimal numerical overhead compared to the Leap-Frog method

Longitudinal Transversal Operator Splitting

Split the Maxwell equations, with respect to space, into a transversal and a longitudinal part

Noise Reduction

Longitudinal-Transversal Strang Splitting

- Uses the largest time step possible for relativistic beams, the Courant time step
- Is 2 times more expensive than the Leap-Frog method, but the time step is 1.7 times greater
- Has zero dispersion along the beam axis at the Courant time step
- Is still second order accurate in space and time
- The splitting error creates magnetical and electrical charges
 - This seems not to be a problem in practical calculations

Motivation

TECHNISCHE

UNIVERSITÄT <u>DARMS</u>TADT

- Finite Integration Technique
 - Non Conformal
 - Conformal
- Noise Reduction
 - Splitting Scheme
 Dissipative Scheme
 - Dissipative Scheme
- Analytical Benchmark
- Simulations
- Conclusions

Analytical Benchmark

Bunch Parameters:

Q _{Bunch}	-1 / nC
β_{Bunch}	0.9
Γ _{Bunch}	3.0 / mm
I _{Bunch}	6.0 / mm
r _{Tube}	20.0 / mm

Gaussian Time Distribution:

Absolute Value of Electrical Field in the Waveguide

UNIVERSITÄT DARMSTADT

UNIVERSITÄT DARMSTADT

UNIVERSITÄT DARMSTADT

UNIVERSITÄT DARMSTADT

- Motivation
- Finite Integration Technique
 - Non Conformal
 - Conformal
- Noise Reduction
 - Splitting Scheme
 - Dissipative Scheme
- Analytical Benchmark
- Simulations
- Conclusions

TECHNISCHE UNIVERSITÄT DARMSTADT

26

Bunch Parameters:

bunch radius	<i>r</i> ₀ = 1.5 mm
bunch charge	<i>q</i> = -1 nC
bunch length	⊿ <i>t_{FWHM}</i> = 20 ps
rise/fall time	⊿t _{rise} =2 ps
reference phase	$\varphi_0 = -47.4^{\circ}$
field at cathode	E_{cath} = -40.0 MV/m

Electrical Space Charge Field in the PITZ - Cavity

- •RF fields are precalculated
- •Fully 3D simulation

Longitudinal Electrical Field on the Beam Axis

Leap-Frog Scheme

Longitudinal Electric Field / MV/m

Longitudinal Electrical Field on the Beam Axis

TCA Scheme

Longitudinal Electric Field / MV/m

Longitudinal Electrical Field on the Beam Axis

Splitting Scheme

Longitudinal Electric Field / MV/m

- Motivation
- Finite Integration Technique
 - Non Conformal
 - Conformal
- Noise Reduction
 - Splitting Scheme
 - Dissipative Scheme
- Analytical Benchmark
- Simulations
- Conclusions

- The conventional method has a large numerical error
- Large structures with short bunches cannot be simulated.
 - S. Schnepp Poster THPLT037 "Investigation of Numerical Noise in PIC-codes"
 - S. Setzer Poster WEPLT061 "Influence of Beam Tube Obstacles on the Emittance of the PITZ Photoinjector"
 - E. Gjonaj Poster THPLT035 "Development of a 3D-Gun-Code based on a Charge Conserving Algorithm"
- Full 3D simulations of e.g.modern high brightness electron sources at in reach

Thank You for the Attention