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Abstract

The measurement of local linear errors at RHIC inter-
action regions using an ”action and phase” analysis of dif-
ference orbits has already been presented [2]. This paper
evaluates the accuracy of this technique using difference or-
bits that were taken when known gradient errors and skew
quadrupole errors were intentionally introduced. It also
presents action and phase analysis of simulated orbits when
controlled errors are intentionally placed in a RHIC simu-
lation model.

INTRODUCTION

It is well known that gradient errors in the optical lat-
tice of a circular accelerator change the beta functions all
around the ring. It is precisely this fact what makes so dif-
ficult to localize and eventually determine the magnitude
of such errors. However, if we think about this problem in
terms of particle trajectories it will be clear that it should
be possible to study gradient errors in a local way.

In order to clarify the last point let’s suppose that a par-
ticle makes its first pass through an arbitrary optical lattice
with a gradient error at certain point s1. Using the matrix
formalism [1] we can obtained a equation for the betatron
oscillations of the particle for s < s1 as:

x(s) = A
√
β(s) sin (φ(s)− ϕ), (1)

where A and ϕ are constants that depend on the initial con-
ditions x(0) and x′(0), and β(s) and φ(s) can be taken as
the designed beta functions which is valid for the first pass
of the particle since the lattice without errors is completely
equivalent to the lattice with a gradient error for s < s1.
The new lattice functions that arises as a consequence of
the gradient error can also be used in Eq. 1 to describe the
particle motion and this choice will lead to different values
of A and ϕ but equally valid.

Now, let’s compare what happens in the lattice without
errors and the lattice with a gradient error at s = s1. When
the particle goes through s1, it receives a different kick in
each of these lattices. That will make x and x′ just after s1
different in each case. But the two lattices are still the same
for s > s1. This means that in both cases I still can use
the matrix formalism with the designed lattice functions
but the initial conditions in each case would be different.
Hence, Eq. 1 is still valid to describe betatron motion in the
lattice with errors but with different constants A and ϕ. In
contrast, if the new lattice functions (the ones generated by

the gradient error at s = s1) are used the values of A and ϕ
will be equal before and after s = s1.

It is possible to see that the previous results are also valid
for closed orbits if we remember that they are also possi-
ble particle trajectories and the the previous reasoning was
done for an arbitrary particle trajectory.

The analysis in which the designed beta functions are
used it is obviously ideal to localize magnetic errors. All
it has to be done is to obtain plots of A and ϕ as function
of s. Any magnetic error will appear as a jump in the plots
of these two “constants”. Such plots can be obtained after
applying

J =
xi + xi+1 − 2xixi+1 cos(φi+1 − φi)

sin4 (φi+1 − φi)
(2)

tanϕ =
xi sinφi+1 − xi+1 sinφi

xi cosφi+1 − xi+1 cosφi

to each pair of adjacent orbit measurements xi and xi+1

where i runs from the orbit measurement done at the be-
ginning of the ring to the measurement done at the end of
the ring, φi and φi+1 are the corresponding phase advances
and J = A/2. The original choice of constants was J and
ϕ rather than A and ϕ [3]. For that reason, this method was
named action and phase analysis.

Action and phase analysis has already proven to very
useful to detect and estimate linear errors at RHIC IRs [2]
and the same analysis might lead to an accurate method of
detecting and measuring non linear errors [4].

This article shows analysis based on simulated orbits
when known linear errors are placed on a RHIC model and
also we show similar analysis for real RHIC orbits when
known linear errors are introduced in the accelerator.

LINEAR ERROR SIMULATIONS USING A
RHIC MODEL

RHIC orbits can be easily generated with the MAD pro-
gram (V. 8.23) providing as an input the RHIC lattice with
only linear components activated. After the simulation is
run, it generates a Twiss file where all the information about
the orbit is recorded. In order to test the action and phase
analysis to estimate errors, an orbit with one gradient error
was generated with MAD. The action and phase analysis
done with the help of Eq. 3 on a particular orbit with a gra-
dient error is shown in Fig. 1. Two jumps in action and
phase can be seen in Fig. 1. The first jump at s = s1 =
614m corresponds to the gradient error introduced in the
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RHIC quadrupole bo7-qd1 while the second jump at s =
2584m correspond to the dipole corrector bo2-th2 used to
produce a large closed orbit.

It is possible to estimate the value of such gradient error
as [5]:

∆k =

√√
√√

(
JL

x + JR
x − 2

√
JL

x J
R
x cos(ψL

x − ψR
x )

)

βx(s1)x(s1)2
(3)

where JL
x , JR

x , ψL
x and ψR

x correspond to the action and
phases for s < s1 (superscript L) and s > s1 (superscript
R) respectively.

0 1000 2000 3000 4000
s[m]

4
4,2
4,4
4,6
4,8

5
5,2
5,4

P
h
a
s
e

 [
R

a
d
]

0 1000 2000 3000 4000
0,044
0,046
0,048

0,05
0,052
0,054
0,056
0,058

A
c
ti
o

n
[n

m
]

0 1000 2000 3000 4000
-3
-2
-1
0
1
2
3

0 1000 2000 3000 4000
-0,2

-0,1
0

0,1

0,2

x
[m

m
]

Figure 1: Action and phase analysis on a RHIC simulated
orbit. One gradient error as big as 10−3 1/m has been in-
troduced intentionally in the simulation

Orbits with different values of gradient errors were gen-
erated with MAD. Action and phase analysis was done on
all those orbits and with the help of Eq. 3 the corresponding
values were recovered and summarized on Fig. 2. There is
a slight difference between the expected values and the re-
covered values that seems to increase as the gradient error
increases pointing to fact that a systematic error might be
present either in the simulation or the method to estimate
the error. However, the differences are of the order of 1%
for a gradient error as big as 7 ∗ 10−3 1/m. Similar simu-
lations and analysis were done for skew quadrupole errors
with results that can be seen on Fig. 3. As before there is a
small difference (3.5 % for the biggest skew quadrupole
error used) between the expected values and the recov-
ered ones that increase as the skew quadrupole error is in-
creased.

EXPERIMENTAL TEST

Since the beta functions at RHIC Interaction Regions are
significantly bigger than in the arcs, magnetic errors in the
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Figure 2: Relation between the gradient errors used to gen-
erate the RHIC orbits and the gradients errors recovered
using the action and phase analysis on the simulated orbits.
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Figure 3: Relation between the skew quadrupole errors
used to generate the RHIC orbits and the skew quadrupole
errors recovered using the action and phase analysis on the
simulated orbits.

IRs have a strong effect in the orbit. Thus, the IRs are an
ideal place to test the effect of such errors. In particular
the RHIC quadrupole bo7-qd1 located at the 8 o’clock IR
was used to perform the experiments related with gradient
errors while the skew quadrupole bi8-qs3 was used to per-
form the experiments related with skew quadrupole errors.

For all the experiments the closed orbit was enlarge sig-
nificantly after tweaking one of the RHIC dipole corrector.
The choice of this corrector was done such that there were
a large excursion of the orbit in the region of interest, in
this case 8 o‘clock.

Before obtaining plots like Fig. 2 and Fig. 3 with the real
orbits, it is necessary to do special data processing to re-
duce noise and isolate the errors that want to be measure.
Such procedures have been already described in reference
[2] and with more details in reference [5]. One of the dif-
ferences of the experimental procedure with the simulation
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Figure 4: Relation between the gradient errors intentionally
placed in the accelerator and the measured ones obtained
from action and phase analysis discussed in this paper.

is that more than one orbit is needed to calculate a linear
error; several of them in the horizontal plane and several of
them in the vertical plane. It is also necessary to discard
jumps in action and phase produced by dipole errors differ-
ent to the dipole corrector used to enlarge the closed orbit.
This problem is solved building the difference between the
enlarged closed orbit and the closed orbit that results when
the dipole corrector is set to its nominal value. The resul-
tant orbit is the so called difference orbit.

Known values of gradient errors were introduced in the
RHIC machine and after following the procedure explained
in the previous paragraph, the plot in Fig. 4 was obtained.

It is necessary to point out that a correction to Fig. 4 was
done to all points in order to discount the gradient error
already present in the RHIC IR when the experiments were
done.

Fig. 4 shows a dispersion of data around the expected
values close to 10%. This means that magnetics gradients
could be determined with accuracy of 10−4 1/m or about
0.1% the nominal value of an IR quadrupole gradient.

Also, measurements of intentionally placed skew
quadrupole errors were possible with results that can be
seen on Fig. 5 . In this case , the accuracy to determine
skew errors it is around 15 % which is bigger than the previ-
ous case maybe because these orbits were taken during the
run 2001 with probably a lower performance of the Beam
Position Monitors than the performance of the BPMs when
the gradient error measurements were done in the run 2003.
Another possible cause is that the orbits in both cases were
processed differently: several orbits were needed to find a
single gradient error while only one first turn trajectory was
used to determine a skew quadrupole error.

As mentioned, the previous experiments were done dur-
ing the RHIC 2001 run and the RHIC 2003 run. Since
then, it has been a significant improvement in the Beam
position Monitor system of the accelerator[6] and since the
BPMs are at the heart of the present method, a significant

improvement in the accuracy it is also expected for future
experiments.
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Figure 5: Relation between the skew quadrupole errors in-
tentionally placed in the accelerator and the measured ones
obtained from action and phase analysis dicuss ed in this
paper

CONCLUSIONS

It was shown that gradient errors and skew errors can
be studied in a local way leading to an easy method to
locate and estimate these errors in a accurate way. Since
BPM performance is vital for the action and phase analysis
presented, it is expected than the always improving perfor-
mance of the RHIC BPM system brings a similar improve-
ment in the accuracy of our method.
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