
FINDING THE CIRCULAR MAGNET APERTURE WHICH ENCLOSES
AN ARBITRARY NUMBER OF MIDPLANE-CENTERED BEAM

ELLIPSES∗

J. Scott Berg, BNL, Upton, NY, USA

Abstract

In specifying the magnets for an accelerator, one must
be able to determine the aperture required by the beam. In
some machines, in particular FFAGs, there is a significant
variation in the closed orbit and beta functions over the en-
ergy range of the machine. In addition, the closed orbit
and beta functions may vary with the longitudinal position
in the magnet. It is necessary to determine a magnet aper-
ture which encloses the beam ellipses at all energies and
all positions in the magnet. This paper describes a method
of determining the smallest circular aperture enclosing an
arbitrary number of midplane-centered ellipses.

INTRODUCTION

The size of magnet apertures has a strong effect in de-
termining the cost of an accelerator. Thus, it is generally
important to determine the smallest magnet aperture which
will still meet beam transmission requirements. For pro-
ducing numerically optimized designs, it is necessary to
have a systematic algorithm for computing the aperture.

A particular application of interest is fixed field alternat-
ing gradient (FFAG) accelerator design, where a very large
energy range leads to a significant variation of the closed
orbit with energy. In these cases, it is never a safe to assume
that the beam ellipses are centered in the beam pipe. Thus,
the algorithm for finding the beam pipe aperture must take
into account both the axes of the ellipses and the position
of the ellipse centers.

This paper presents an algorithm for computing the mag-
net aperture under the following assumptions:

• The magnet aperture is circular.
• The magnet must enclose a number of ellipses.
• The ellipse axes are horizontal and vertical.
• The ellipses are all centered vertically.

A circular magnet aperture is the most straightforward
shape for a high-field superconducting magnet, so for some
cases that is a good approximation. That assumption turns
out to make the algorithm particularly simple. The assump-
tion of upright, vertically centered ellipses translates into
having no vertical dispersion, no coupling, and ignoring
nonlinear effects which would distort the ellipses into other
shapes. Many machine designs try to eliminate vertical dis-
persion and coupling, and mild nonlinear distortions gen-
erally leave the beam in a roughly elliptical shape anyhow.

∗Work supported by US Department of Energy contract DE–AC02–
98CH10886

ALGORITHM

Imagine a series of ellipses, index by k, described by the
equations

(x− ck)2

a2
k

+
y2

b2
k

= 1. (1)

The goal of the algorithm is to find a circle which encloses
all of these ellipses. For a given center of the circle, it is
generally desirable to have the circle of smallest radius.
Thus, the circle in question will be tangent to at least one
of the ellipses.

The square of the radius of a circle, centered at (z, 0),
which is outside of ellipse k and tangent to it, is R2

k(z),
given by

R2
k(z) =

R2
k−(z) z � zk−

R2
k0(z) zk− < z < zk+

R2
k+(z) zk+ � z

(2)

R2
k−(z) = (ck + ak − z)2

R2
k0(z) = b2

k

[
(ck − z)2

b2
k − a2

k

+ 1
]

R2
k+(z) = (z − ck + ak)2

zk− = min
{

ck, ck −
b2
k − a2

k

ak

}

zk+ = max
{

ck, ck +
b2
k − a2

k

ak

}

.

The goal of the algorithm is to find the function

R2(z) = max
k
{R2

k(z)}. (3)

One can then minimize R2(z) with respect to z if one
wishes to find the smallest aperture, or minimize some cost
function (e.g., a magnet cost) with respect to z.

Define Mk to be the set of values for z (the horizontal
coordinate of the circle’s center) for which the circle with
smallest radius that is outside all of the ellipses is tangent
to ellipse k. If multiple ellipses are tangent to that circle,
z ∈Mk only if k is the lowest index for which that holds:

Mk = {z : (∀j)(Rk(z) > Rj(z)
or [Rk(z) = Rj(z) and k < j])}. (4)

From the definition,

Mk ∩Mj = ∅ k �= j
⋃

k

Mk = R. (5)

Proceedings of EPAC 2004, Lucerne, Switzerland

2858

In software, the Mk are each stored as a sequence of
intervals. Each ellipse is stored as its triplet of values
(ak, bk, ck) plus the list of pairs of points describing the
intervals in Mk.

A list (henceforth “the list”) of ellipses and their corre-
sponding list of intervals is kept by the algorithm. If Mk

becomes empty, it is removed from the list. The algorithm
attempts to add a number of ellipses to the list. The first
ellipse is added to the list with M1 = {(−∞,∞)}. Each
subsequent ellipse, call its index m, is compared to each
ellipse (index k) still in the list. Before going through the
list of ellipses, Mm starts out empty. R2

k(z) = R2
m(z) at

two or fewer values of z (henceforth called the breakpoints;
see next section for proof). Furthermore, as z → −∞,
R2

m(z) > R2
k(z) if cm + am > ck + ak, and as z → ∞,

R2
m(z) > R2

k(z) if cm − am < ck − ak.
If there are no breakpoints and R2

m(z) > R2
k(z), then

Mm = Mm ∪ Mk, and ellipse k is removed from the
list. If there are no breakpoints and R2

m(z) � R2
k(z), we

are finished processing ellipse m, and it is not added to the
list. If there are one or more breakpoints, the intervals in
Mk are examined in order, determining whether any of the
breakpoints lie inside that interval. For this purpose, it is
useful to keep the intervals sorted by their lower (or upper)
bounds. If the breakpoint is outside the interval, the inter-
val is completely removed from Mk and added to Mm if
R2

m(z) > R2
k(z) for z in the interval. If one breakpoint lies

in the interval, the interval is split in two, the part where
R2

m(z) > R2
k(z) is added to Mm, and the other part re-

places the original interval. If two breakpoints lie in the
interval, the part(s) where R2

m(z) > R2
k(z) is(are) added

to Mm, and the original interval is removed from Mk and
is replaced by the remaining part(s). This procedure guar-
antees that the conditions in Eq. (5) continue to hold.

In practice, the list of intervals generally consists of
fewer than 5 intervals, and so this algorithm is extremely
fast. In addition, R2(z) can be evaluated rapidly by go-
ing through the intervals in Mk for each ellipse in the list,
determining whether z lies in that interval, and if it does re-
turning R2

k(z). One could speed this somewhat by forming
a list of intervals and the the ellipse that they correspond to.
One could even do a binary search in that full list of inter-
vals. The ability to evaluate R2(z) is useful for performing
minimizations with respect to the placement of the center
of the beam pipe.

In most cases, however, one is looking for the minimum
value of R2(z). This occurs either at the boundary be-
tween intervals, or inside of a single interval. The min-
imum of R2

k(z) always occurs at ck, so the minimum of
R2(z) is found simply by searching determining whether
ck ∈ Mk for some k, and if not, searching through all the
intervals and determining which interval boundary has the
smallest value of R2(z). Note that the derivative of R2(z)
is monotonically increasing (but not continuous), so if the
intervals are examined in order, once the value of R2(z) in-
creases, one knows that one has found that minimum. Fig-
ure 1 shows an example where the smallest circle enclosing

-0.1 -0.05 0 0.05 0.1 0.15
x (m)

-0.1

-0.05

0

0.05

0.1

0.15

y
(m

)

Figure 1: Results of the algorithm finding the smallest cir-
cle enclosing all ellipses.

a group of ellipses is found using this algorithm.

PROOF OF TWO OR FEWER
INTERSECTIONS

We want to prove that the function

d(z) = R2
2(z)−R2

1(z) (6)

has two or fewer zeros in z. If b1 < a1 and b2 < a2, then
d(z) is piecewise linear, and can only be zero when either
z < c1 and z > c2 or z > c1 and z < c2, and thus at only
one point.

Let’s now take the case where b1 > a1 and b2 > a2.
It is easy to verify that the first derivative of d is con-
tinuous and piecewise linear in this case. Without loss
of generality, assume that z1− < z2−. If z1− > z2−,
exchange the 1 and 2 subscripts and change the sign of
z, and you have the case z1− < z2−, and d(z) has the
same zeros. d′′(z) is a piecewise constant function, and is
zero for z < z1− and z > max{z1+, z2+}. d′′(z) only
changes value at the points z1−, z1+, z2−, and z2+. Fur-
thermore, d′(z) = 2(c1 + a1 − c2 − a2) for z < z1− and
d′(z) = 2(c1 − a1 − c2 + a2) for z > max{z1+, z2+}.

Since z1− < z1+, z2− < z2+, and z1− < z2−, there are
only three possible sequences of the points z1−, z1+, z2−,
and z2+:

1. (z1−, z1+, z2−, z2+)
2. (z1−, z2−, z1+, z2+)
3. (z1−, z2−, z2+, z1+)

For the sequence (z1−, z1+, z2−, z2+), d′′(z) looks like

Proceedings of EPAC 2004, Lucerne, Switzerland

2859

and d′(z) looks like

Note that the signs in d′′(z) and the signs of the slopes
in d′(z) must be as shown. For d(z) to have three zeros,
d′(z) would need to have two zeros. This would require
that c1+a1−c2−a2 > 0 and c1−a1−c2+a2 > 0. These
two equations together imply that c1− c2 > |a1 − a2|. But
since z1− < c1 < z1+ and z2− < c2 < z2+, we know that
c1 < c2. Thus, d(z) must have two or fewer zeros in this
case.

For the sequence (z1−, z2−, z1+, z2+), d′′(z) looks like

and d′(z) looks like

As before, having three zeros of d(z) requires two zeros
in d′(z), which in turn requires that c1 − c2 > |a1 − a2|.
Since z1− < z2− and z1+ < z2+,

c1 − c2 < −
∣
∣
∣
∣
b2
1 − a2

1

a1
− b2

2 − a2
2

a2

∣
∣
∣
∣ . (7)

This is a contradiction, so again d(z) has two or fewer ze-
ros.

For the sequence (z1−, z2−, z2+, z1+), d′′(z) looks like

and d′(z) looks like

The signs in d′′(z) must be as shown except for the central
region. However, if d′′(z) is not positive in that central
region, d′(z) will clearly have at most one zero, and d(z)
will therefore have at most two zeros. It appears that d′(z)
as shown could have 0, 1, 2, or 3 zeros. If it has 2 or 3
zeros, any zeros occurring in the intervals (z1−, z2−) and
(z2+, z1+) will be maxima. We can evaluate d(z) at those
maxima. In the interval (z1−, z2−), the zero of d′(z) would
occur when

z =
b2
1c1

a2
1

− b2
1 − a2

1

a2
1

(c2 + a2), (8)

and d(z) takes on the value

b2
1

a2
1

(c2 + a2 − c1 − a1)(c2 + a2 − c1 + a1) (9)

at that point. If z is in the interval (z1−, z2−), c2 + a2 −
c1 − a1 < 0 and c2 + a2 − c1 + a1 > 0, and thus d(z) < 0
at that maximum. Similarly, if there is a local maximum
in the interval (z2+, z1+), d(z) < 0 at that maximum as
well. Since all the local maxima are negative, if d′(z) has
2 zeros, d(z) will have one zero, and if d′(z) has 3 zeros,
d(z) will not have any zeros. If d′(z) has 0 or 1 zero, d(z)
will have two of fewer zeros.

If b1 < a1 and b2 > a2, there are three cases:

1. c1 < z2−: corresponds to (z1−, z1+, z2−, z2+).
2. z2− < c1 < z2+: corresponds to

(z1−, z2−, z2+, z1+).
3. c1 > z2+: corresponds to (z1−, z1+, z2−, z2+).

The proofs are nearly identical to those for the case where
b1 > a1 and b2 > a2, and the correspondences given in the
list indicate the appropriate case above to use for the proof.
The case where b2 < a2 and b1 > a1 clearly is simply an
exchange of indices, and thus since there are at most two
zeros of d(z) in this case as well.

CONCLUSIONS

I have described a very efficient algorithm for finding a
circular beam pipe which encloses a group of ellipses. The
algorithm is used in practice for lattice design optimiza-
tion, and consumes a negligible amount of computational
resources compared to other parts of the optimization. It
would be interesting to improve the algorithm to find other
shapes of beam pipes (elliptical, for example), but the al-
gorithm would likely be much more complex since it is un-
likely that one could use the simple linear interval searches
done here.

Proceedings of EPAC 2004, Lucerne, Switzerland

2860

