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Abstract 
We are developing a computer code, ORBIT, 

specifically for beam dynamics calculations in high-
intensity rings.  Our approach allows detailed simulation 
of realistic accelerator problems.  ORBIT is a particle-in-
cell tracking code that transports bunches of interacting 
particles through a series of nodes representing elements, 
effects, or diagnostics that occur in the accelerator lattice.  
At present, ORBIT contains detailed models for strip-foil 
injection including painting and foil scattering; rf focusing 
and acceleration; transport through various magnetic 
elements; longitudinal and transverse impedances; 
longitudinal, transverse, and three-dimensional space 
charge forces; collimation and limiting apertures; and the 
calculation of many useful diagnostic quantities.  ORBIT 
is an object-oriented code, written in C++ and utilizing a 
scripting interface for the convenience of the user.  
Ongoing improvements include the addition of a library 
of accelerator maps, BEAMLINE/MXYZPTLK; the 
introduction of a treatment magnet errors and fringe 
fields; the conversion of the scripting interface to the 
standard scripting language, Python; and the 
parallelization of the computations using MPI.  The 
ORBIT code is an open source, powerful, and convenient 
tool for studying beam dynamics in high-intensity rings. 

1 OVERVIEW 
High-intensity proton ring beams are characterized by 

low energy, high intensity, and low loss requirements.  
Satisfying the beam-loss requirements necessitates a 
detailed understanding of beam dynamics in this regime.  
At high intensity, collective effects due to space charge 
and wakefields strongly affect the beam behavior, and 
single particle models do not suffice.  Also, because of the 
complexity of collective phenomena for bunched beams 
in high-intensity rings, a computational approach is 
productive for theoretical studies and indispensable in 
solving detailed design and engineering problems. 

Recognizing this, the SNS Accelerator Physics Group 
at ORNL, with help from colleagues at BNL, undertook 
the development of an object-oriented general-purpose 
code, ORBIT [1,2].  ORBIT began as a C++ rewrite of 
ACCSIM [3], developed under the SuperCode driver shell 
[4], but has since undergone extensive independent 
development, which will be described here. 

ORBIT is a particle tracking code in 6D phase space.  
Its basic classes are herds, which are groups of particles, 
and nodes, which operate on the herds.  ORBIT has been 

designed to simulate real machines: it has detailed models 
for transport through various lattice elements; injection 
foil and painting; rf and acceleration; 2.5D and 3D space 
charge; longitudinal impedance and space charge; 
transverse impedance; apertures: collimation; and beam 
diagnostics. 

Present work on ORBIT focuses on the exploitation of 
some of the more recent and computationally demanding 
physics modules and on the enhancement of overall 
capabilities.  With the completion of the transverse 
impedance, 3D spacecharge, and collimation routines, the 
physics for new classes of problems is available.  
However, meaningful calculations will require high 
performance computing techniques, such as the 
implementation of parallel computing.  Also, because 
ORBIT has developed with an emphasis on collective 
effects, single particle transport models are still 
rudimentary.  In order to assess losses to the accuracy 
demanded in recent and future high intensity rings, high 
order maps and a comprehensive treatment of magnet 
errors are necessary.  Finally, although SuperCode is an 
innovative tool, it is neither standard nor supported.  
Comparable tools, based on the Python programming 
language, now are standard and present an attractive 
option. 

Consequently, we are now developing parallel 
algorithms for collective beam dynamics, including higher 
order single particle maps, creating magnet error routines, 
and planning to implement a new driver shell based on 
Python.  We now describe the models in ORBIT. 

2 COMPLETED ORBIT MODELS 
The coordinate representation in ORBIT utilizes the 

usual accelerator expansion.  The horizontal direction is 
represented by x , x′ , the vertical direction by y , y′ , 
and longitudinal phase space by the phase angle φ , and 
energy deviation, dE , from a specified closed orbit 
reference particle.  The independent variable is the 
machine location s .  

ORBIT can construct lattices by reading output files 
from MAD [5] or DIMAD [6], by direct specification, or 
by specifying a uniform focusing channel.  Linear 
transport is carried out through symplectic matrix 
multiplication.  Nonlinear elements can be evaluated in 
the thin lens approximation, and higher order single 
particle transport terms, such as chromaticity, can be 
evaluated using second order transport matrices.  There is 
no specific facility for the treatment of errors or fringe 
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fields.  Field errors in straight lattice elements can be 
calculated in MAD and included in the MAD output. 

ORBIT can inject particles turn-by-turn or utilize a 
complete distribution specified at the start.  A variety of 
distributions can be generated internally.  Any externally 
generated distribution can be read in.  Injection painting is 
treated with user-defined time-dependent closed orbit 
bumps.  ORBIT contains an injection foil model that 
keeps track of foil hits and applies transverse kicks based 
on multiple Coulomb scattering.  Particles that miss the 
foil at injection are removed from the beam. 

The RF cavity model provides longitudinal kicks based 
on a specified time-dependent waveform with multiple 
harmonics.  For nonaccelerating cases, the synchronous 
phase is assumed to be zero, and only the harmonics and 
time-dependent voltages need to be specified.  For 
accelerating cases, the harmonics, voltages, and time-
dependent dipole fields must be specified.  The model 
uses this information to calculate the synchronous phase 
and the resulting kicks.  The transverse phase space is also 
adjusted to conserve normalized emittance. 

The 2.5D space charge model is implemented as a 
series of kicks separated by other transport operations.  
Particles are binned in a 2D rectangular grid using a 
second order distribution scheme.  The potential for the 
distributed charges is then solved on the transverse grid 
using a fast FFT solver.  Conducting wall (circular, 
elliptical, or rectangular beam pipe) boundary conditions 
are then imposed using a method described in Ref. [7].  
Particle kicks are obtained from second order 
interpolation of the potential, completing what might be 
called a �quasi-symplectic� evaluation.  Finally, the kicks 
are weighted by the local longitudinal density to account 
for bunch factor effects.  This is the reason we call the 
model 2.5D.  There is also an alternative direct force 
(momentum-conserving) solver without beam pipe that 
uses a method described in Ref. [8]. 

 
Figure 1.  3D space charge benchmark for triangular 
charge distribution:  a) tune shifts vs. position, b) 
longitudinal force vs. position.  2.5D and 3D results agree 
with each other and with analytic calculations. 

 
The 3D spacecharge model is a simple generalization of 

the 2.5D routine.  Particles are distributed to a 3D 
rectangular grid using a second order scheme.  Typically, 
for rings, the longitudinal spacing greatly exceeds the 
transverse spacing.  The potential is solved as a 2D 
problem using the distributed charges and fast Fourier 
transforms on the transverse grid for each longitudinal 
slice.  Conducting wall boundary conditions (circular, 

elliptical, or rectangular beam pipe) are used to �tie 
together� the transverse solutions into a 3D potential.  
Particle kicks are obtained by interpolating the potentials 
in 3D using a second order �quasi-symplectic� 
interpolation scheme. 

ORBIT treats longitudinal impedances and/or space 
charge in a fashion similar to ESME [9].  The longitudinal 
impedance is represented as harmonics of the fundamental 
ring frequency.  Particles are binned longitudinally and 
the binned distribution is Fourier transformed.  The space 
charge contribution to the impedance is combined with 
the external impedance.  The Fourier transformed 
distribution is multiplied by the impedance to give the 
longitudinal kicks to the particles.  For many rings, the 
synchrotron period is much longer than a turn, and it is 
sufficient to evaluate the longitudinal impedance and 
space charge kicks once each turn.  More frequent 
evaluations may be required for rings having higher 
synchrotron frequencies. 

Transverse impedances are also treated as localized 
nodes in ORBIT.  The validity of this approach requires 
the element length to be short compared to the betatron 
oscillation wavelength.  Otherwise, multiple impedance 
nodes are required.  As with the longitudinal impedance, 
the transverse impedance is represented by its Fourier 
components, but now the appropriate frequencies are the 
betatron sidebands of the ring frequency harmonics.  For 
both impedance models, the formulation incorporates 
velocities below the speed of light.  Particle kicks are 
obtained by convolution of the beam current dipole 
moment with the impedance.  In evaluating the beam 
current it is assumed that the dipole moment evolves from 
the previous turn through a simple betatron oscillation. 
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Figure 2.  Phase space coordinates for benchmark of 
transverse impedance model with analytic calculation for 
pencil beam. 
 

Circular, elliptical, rectangular, or racetrack apertures 
are defined in ORBIT.  The apertures can be set either to 
allow particles to pass through and simply tabulate the 
hits, or to remove the particles from the beam and tabulate 
the loss locations. 

ORBIT contains a detailed collimation model.  
Collimator shapes include the aperture shapes, single or 
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multiple edges at arbitrary angles, and also a rectangular 
plate collimator that can be used for beam windows or 
foils.  Physics includes multiple Coulomb scattering, 
ionization energy loss, nuclear elastic and inelastic 
scattering, and Rutherford scattering for a number of 
materials.  Monte Carlo algorithms are used for particle 
transport inside the collimator, and step sizes are carefully 
adjusted near collimator boundaries. 
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Figure 3.  Results from SNS collimation study: a) particle 
impacts on beam scrapers, b) effects of collimation on 
emittance distribution. 

 
A list of useful diagnostics in ORBIT includes the 

following: dumps of particle coordinates, tunes, or 
emittances at any point/node in the ring; histograms of 
particle distributions in x, y, phi, and emittance; rms 
emittances or beam moments versus turn or versus 
position; statistical calculation of beta functions; and 
longitudinal harmonics of the beam centroid.  Because of 
the recent development of 3D models in ORBIT, we are 
extending our diagnostics to include more functions of 
longitudinal position. 

3 ONGOING DEVELOPMENTS 
The present emphasis in ORBIT development is on 

improvement of both physics and computational 
capabilities.  In the physics category, we are significantly 
extending the single particle transport model by 
interfacing ORBIT and the BEAMLINE/MXYZPTLK 
library for maps and tracking [10].  In addition, we are 
including a comprehensive set of magnet error routines 
and a hard-edge fringe field model.  At this time, the 
ORBIT - BEAMLINE/MXYZPTLK interface has been 
partly completed with some options working, and the 
errors will be included this summer. 

The most urgent computational improvement to ORBIT 
is the introduction of parallel processing algorithms.  We 
are doing this using the MPI libraries, and at present the 
parallelization of the 2.5D space charge routines has been 
carried out and parallel versions of the 3D space charge 
routines are being developed.  We anticipate near-term 
completion of this work, to be followed by creation of 
parallel versions of the diagnostic routines. 

In the slightly longer term, we plan to convert the 
ORBIT user interface and driver shell from SuperCode to 
Python.  The feasibility of and methods for doing this 
have been examined, but the work remains to be carried 
out. 

4 OPEN CODE 
Finally, we emphasize that ORBIT is an open code.  

The source code can be obtained by downloading from 
http://www.sns.gov//APGroup/Codes/Codes.htm and 
there are also a user manual, instructions for building 
ORBIT, and examples at that web site. 
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