
ORBIT: BEAM DYNAMICS CALCULATIONS
FOR HIGH-INTENSITY RINGS

J.A. Holmes, V. Danilov, J. Galambos, A. Shishlo, ORNL, Oak Ridge, TN 37831, USA
S. Cousineau, Indiana University, Bloomington, IN 47405, USA

W. Chou, L. Michelotti, F. Ostiguy - FNAL, Batavia, IL 60510, USA
J. Wei, BNL, Upton, NY, 11973, USA

Abstract
We are developing a computer code, ORBIT,

specifically for beam dynamics calculations in high-
intensity rings. Our approach allows detailed simulation
of realistic accelerator problems. ORBIT is a particle-in-
cell tracking code that transports bunches of interacting
particles through a series of nodes representing elements,
effects, or diagnostics that occur in the accelerator lattice.
At present, ORBIT contains detailed models for strip-foil
injection including painting and foil scattering; rf focusing
and acceleration; transport through various magnetic
elements; longitudinal and transverse impedances;
longitudinal, transverse, and three-dimensional space
charge forces; collimation and limiting apertures; and the
calculation of many useful diagnostic quantities. ORBIT
is an object-oriented code, written in C++ and utilizing a
scripting interface for the convenience of the user.
Ongoing improvements include the addition of a library
of accelerator maps, BEAMLINE/MXYZPTLK; the
introduction of a treatment magnet errors and fringe
fields; the conversion of the scripting interface to the
standard scripting language, Python; and the
parallelization of the computations using MPI. The
ORBIT code is an open source, powerful, and convenient
tool for studying beam dynamics in high-intensity rings.

1 OVERVIEW
High-intensity proton ring beams are characterized by

low energy, high intensity, and low loss requirements.
Satisfying the beam-loss requirements necessitates a
detailed understanding of beam dynamics in this regime.
At high intensity, collective effects due to space charge
and wakefields strongly affect the beam behavior, and
single particle models do not suffice. Also, because of the
complexity of collective phenomena for bunched beams
in high-intensity rings, a computational approach is
productive for theoretical studies and indispensable in
solving detailed design and engineering problems.

Recognizing this, the SNS Accelerator Physics Group
at ORNL, with help from colleagues at BNL, undertook
the development of an object-oriented general-purpose
code, ORBIT [1,2]. ORBIT began as a C++ rewrite of
ACCSIM [3], developed under the SuperCode driver shell
[4], but has since undergone extensive independent
development, which will be described here.

ORBIT is a particle tracking code in 6D phase space.
Its basic classes are herds, which are groups of particles,
and nodes, which operate on the herds. ORBIT has been

designed to simulate real machines: it has detailed models
for transport through various lattice elements; injection
foil and painting; rf and acceleration; 2.5D and 3D space
charge; longitudinal impedance and space charge;
transverse impedance; apertures: collimation; and beam
diagnostics.

Present work on ORBIT focuses on the exploitation of
some of the more recent and computationally demanding
physics modules and on the enhancement of overall
capabilities. With the completion of the transverse
impedance, 3D spacecharge, and collimation routines, the
physics for new classes of problems is available.
However, meaningful calculations will require high
performance computing techniques, such as the
implementation of parallel computing. Also, because
ORBIT has developed with an emphasis on collective
effects, single particle transport models are still
rudimentary. In order to assess losses to the accuracy
demanded in recent and future high intensity rings, high
order maps and a comprehensive treatment of magnet
errors are necessary. Finally, although SuperCode is an
innovative tool, it is neither standard nor supported.
Comparable tools, based on the Python programming
language, now are standard and present an attractive
option.

Consequently, we are now developing parallel
algorithms for collective beam dynamics, including higher
order single particle maps, creating magnet error routines,
and planning to implement a new driver shell based on
Python. We now describe the models in ORBIT.

2 COMPLETED ORBIT MODELS
The coordinate representation in ORBIT utilizes the

usual accelerator expansion. The horizontal direction is
represented by x , x′ , the vertical direction by y , y′ ,
and longitudinal phase space by the phase angle φ , and
energy deviation, dE , from a specified closed orbit
reference particle. The independent variable is the
machine location s .

ORBIT can construct lattices by reading output files
from MAD [5] or DIMAD [6], by direct specification, or
by specifying a uniform focusing channel. Linear
transport is carried out through symplectic matrix
multiplication. Nonlinear elements can be evaluated in
the thin lens approximation, and higher order single
particle transport terms, such as chromaticity, can be
evaluated using second order transport matrices. There is
no specific facility for the treatment of errors or fringe

Proceedings of EPAC 2002, Paris, France

1022

fields. Field errors in straight lattice elements can be
calculated in MAD and included in the MAD output.

ORBIT can inject particles turn-by-turn or utilize a
complete distribution specified at the start. A variety of
distributions can be generated internally. Any externally
generated distribution can be read in. Injection painting is
treated with user-defined time-dependent closed orbit
bumps. ORBIT contains an injection foil model that
keeps track of foil hits and applies transverse kicks based
on multiple Coulomb scattering. Particles that miss the
foil at injection are removed from the beam.

The RF cavity model provides longitudinal kicks based
on a specified time-dependent waveform with multiple
harmonics. For nonaccelerating cases, the synchronous
phase is assumed to be zero, and only the harmonics and
time-dependent voltages need to be specified. For
accelerating cases, the harmonics, voltages, and time-
dependent dipole fields must be specified. The model
uses this information to calculate the synchronous phase
and the resulting kicks. The transverse phase space is also
adjusted to conserve normalized emittance.

The 2.5D space charge model is implemented as a
series of kicks separated by other transport operations.
Particles are binned in a 2D rectangular grid using a
second order distribution scheme. The potential for the
distributed charges is then solved on the transverse grid
using a fast FFT solver. Conducting wall (circular,
elliptical, or rectangular beam pipe) boundary conditions
are then imposed using a method described in Ref. [7].
Particle kicks are obtained from second order
interpolation of the potential, completing what might be
called a �quasi-symplectic� evaluation. Finally, the kicks
are weighted by the local longitudinal density to account
for bunch factor effects. This is the reason we call the
model 2.5D. There is also an alternative direct force
(momentum-conserving) solver without beam pipe that
uses a method described in Ref. [8].

Figure 1. 3D space charge benchmark for triangular
charge distribution: a) tune shifts vs. position, b)
longitudinal force vs. position. 2.5D and 3D results agree
with each other and with analytic calculations.

The 3D spacecharge model is a simple generalization of

the 2.5D routine. Particles are distributed to a 3D
rectangular grid using a second order scheme. Typically,
for rings, the longitudinal spacing greatly exceeds the
transverse spacing. The potential is solved as a 2D
problem using the distributed charges and fast Fourier
transforms on the transverse grid for each longitudinal
slice. Conducting wall boundary conditions (circular,

elliptical, or rectangular beam pipe) are used to �tie
together� the transverse solutions into a 3D potential.
Particle kicks are obtained by interpolating the potentials
in 3D using a second order �quasi-symplectic�
interpolation scheme.

ORBIT treats longitudinal impedances and/or space
charge in a fashion similar to ESME [9]. The longitudinal
impedance is represented as harmonics of the fundamental
ring frequency. Particles are binned longitudinally and
the binned distribution is Fourier transformed. The space
charge contribution to the impedance is combined with
the external impedance. The Fourier transformed
distribution is multiplied by the impedance to give the
longitudinal kicks to the particles. For many rings, the
synchrotron period is much longer than a turn, and it is
sufficient to evaluate the longitudinal impedance and
space charge kicks once each turn. More frequent
evaluations may be required for rings having higher
synchrotron frequencies.

Transverse impedances are also treated as localized
nodes in ORBIT. The validity of this approach requires
the element length to be short compared to the betatron
oscillation wavelength. Otherwise, multiple impedance
nodes are required. As with the longitudinal impedance,
the transverse impedance is represented by its Fourier
components, but now the appropriate frequencies are the
betatron sidebands of the ring frequency harmonics. For
both impedance models, the formulation incorporates
velocities below the speed of light. Particle kicks are
obtained by convolution of the beam current dipole
moment with the impedance. In evaluating the beam
current it is assumed that the dipole moment evolves from
the previous turn through a simple betatron oscillation.

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

-1.5 -1 -0.5 0 0.5 1 1.5 2

y-
pr

im
e

[m
ra

d]

y [mm]

1*10^13 Particles, 300 Turns, Simulation
1*10^13 Particles, 300 Turns, Analytic

Figure 2. Phase space coordinates for benchmark of
transverse impedance model with analytic calculation for
pencil beam.

Circular, elliptical, rectangular, or racetrack apertures
are defined in ORBIT. The apertures can be set either to
allow particles to pass through and simply tabulate the
hits, or to remove the particles from the beam and tabulate
the loss locations.

ORBIT contains a detailed collimation model.
Collimator shapes include the aperture shapes, single or

Proceedings of EPAC 2002, Paris, France

1023

multiple edges at arbitrary angles, and also a rectangular
plate collimator that can be used for beam windows or
foils. Physics includes multiple Coulomb scattering,
ionization energy loss, nuclear elastic and inelastic
scattering, and Rutherford scattering for a number of
materials. Monte Carlo algorithms are used for particle
transport inside the collimator, and step sizes are carefully
adjusted near collimator boundaries.

-80

-60

-40

-20

0

20

40

60

80

-50 -40 -30 -20 -10 0 10 20 30 40 50 60

Y
 [

m
m

]

X [mm]

Impact on Scrapers

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300 350 400 450 500

%
 o

f
B

e
a
m

 w
it
h
 L

a
rg

e
r

E
m

it
ta

n
c
e

Emittance (pi mm-mrad)

Beam Distribution Before and After Collimation

Initial
10 Turns

100 Turns

Figure 3. Results from SNS collimation study: a) particle
impacts on beam scrapers, b) effects of collimation on
emittance distribution.

A list of useful diagnostics in ORBIT includes the

following: dumps of particle coordinates, tunes, or
emittances at any point/node in the ring; histograms of
particle distributions in x, y, phi, and emittance; rms
emittances or beam moments versus turn or versus
position; statistical calculation of beta functions; and
longitudinal harmonics of the beam centroid. Because of
the recent development of 3D models in ORBIT, we are
extending our diagnostics to include more functions of
longitudinal position.

3 ONGOING DEVELOPMENTS
The present emphasis in ORBIT development is on

improvement of both physics and computational
capabilities. In the physics category, we are significantly
extending the single particle transport model by
interfacing ORBIT and the BEAMLINE/MXYZPTLK
library for maps and tracking [10]. In addition, we are
including a comprehensive set of magnet error routines
and a hard-edge fringe field model. At this time, the
ORBIT - BEAMLINE/MXYZPTLK interface has been
partly completed with some options working, and the
errors will be included this summer.

The most urgent computational improvement to ORBIT
is the introduction of parallel processing algorithms. We
are doing this using the MPI libraries, and at present the
parallelization of the 2.5D space charge routines has been
carried out and parallel versions of the 3D space charge
routines are being developed. We anticipate near-term
completion of this work, to be followed by creation of
parallel versions of the diagnostic routines.

In the slightly longer term, we plan to convert the
ORBIT user interface and driver shell from SuperCode to
Python. The feasibility of and methods for doing this
have been examined, but the work remains to be carried
out.

4 OPEN CODE
Finally, we emphasize that ORBIT is an open code.

The source code can be obtained by downloading from
http://www.sns.gov//APGroup/Codes/Codes.htm and
there are also a user manual, instructions for building
ORBIT, and examples at that web site.

5 ACKNOWLEDGMENT
SNS is managed by UT-Battelle, LLC, under contract

DE-AC05-00OR22725 for the U.S. Department of
Energy. SNS is a partnership of six national laboratories:
Argonne, Brookhaven, Jefferson, Lawrence Berkeley, Los
Alamos, and Oak Ridge.

 REFERENCES
[1] J. Galambos, J. Holmes, D. Olsen, A. Luccio, and
J. Beebe-Wang, ORBIT Users Manual,
http://www.sns.gov//APGroup/Codes/Codes.htm
[2] J. Galambos, S. Danilov, D. Jeon, J. Holmes, D.
Olsen, J. Beebe-Wang, and A. Luccio, in Proceedings of
the 1999 Particle Accelerator Conference, (New York,
1999) 3143.
[3] F. Jones, Users� Guide to ACCSIM, TRIUMF Design
Note, TRI-DN-90-17 (1990),
http://www.triumf.ca/compserv/accsim.html
[4] S. W. Haney, Using and Programming the
SuperCode,
http://www.sns.gov/APGroup/Codes/Codes.htm
[5] H. Grote and F. Christoph Iselin, The Mad Program,
Version 8.19, User�s Reference Manual, CERN/SL/90-13,
(Geneva, 1996).
[6]See ftp://csftp.triumf.ca/pub/CompServ/dimad/
[7] F. W. Jones, in Proceedings of the 2000 European
Particle Accelerator Conference, (Vienna, 2000) 1381.
[8] R. W. Hockney and J. W. Eastwood, Computer
Simulation Using Particles, Institute of Physics
Publishing (Bristol: 1988).
[9] J. A. MacLachlan, Longitudinal Phase Space Tracking
with Space Charge and Wall Coupling Impedance, Fermi
National Accelerator Laboratory, FN-446, (1987).
[10] L. Michelotti, MXYZPTLK and BEAMLINE: C++
Objects for Beam Physics, AIP Conf. Proc. No. 255 (Proc.
Advanced Beam Dynamics Workshop on Effects of Errors
in Accelerators, Their Diagnosis and Correction, Corpus
Christi, Texas, 199

Proceedings of EPAC 2002, Paris, France

1024

