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Abstract

In order to maximize the achievable luminosity of HERA
the final focusing triplets of the lepton beam are installed
close to the interaction point (IP). The dipole component
of the magnets produces the necessary separation angle be-
tween the lepton and the proton beam. The synchrotron ra-
diation generated in the magnets has to be passed through
the detector beam pipe with extremely small losses for
background reasons. Shape and power of the synchrotron
radiation fan depend critically on the precise alignment of
those magnets. We present measurements aimed at the de-
termination of the beam vs. magnet offsets, as well as the
identification of magnet position errors. We discuss sys-
tematic and random errors and difficulties that arise from
the non-zero design offsets of the magnets. In order to in-
crease the reliability and the speed of the measurements,
automated procedures were developed and incorporated
into the HERA control system.

1 INTRODUCTION AND MOTIVATION

HERA is an electron–proton collider with beam energies
of 27.5 GeV and 920 GeV respectively. Recently the inter-
action regions (IRs) of the machine were rebuilt with the
goal to increase the luminosity about threefold by decreas-
ing the beam spots at the interaction point. The basic idea
of the HERA upgrade project consists in positioning the fi-
nal quadrupoles to focus the colliding proton and electron
(or positron) beams closer to the IP. In order to allow for
an early separation of the beams we use combined function
quadrupoles to focus the beam, and to deflect the leptons at
the same time by the necessary separation angle of about
8 mrad. The two innermost magnets are super-conducting,
installed inside the experimental detectors. On the left side,
from where the electrons come, the magnet is 3.2 m long.
There are two normal conducting magnets on the left side,
each with an iron length of 1.88 m. On the right side the
super-conducting magnet has only a dipole component and
the focusing is done with 3 normal conducting magnets of
the same type as on the left side. All of these magnets con-
tribute to the separation angle and the beam passes them
off-center. The interaction region is shown in Fig. 1 with
the above discussed triplet structures covering the region
between −10 m and +10 m. A critical aspect of the new
interaction region is the production of strong synchrotron
radiation (SR) in the close vicinity of the detector. This
radiation must pass the detector with very small losses in
order to keep the background at acceptable levels. On the
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Figure 1: Top view of the new interaction region. The elec-
tron beam with 20 σ envelope and the proton beam with
12 σ are indicated as well as the synchrotron radiation fan
and the magnets.

other hand the radiation generated in the triplet quadrupoles
tends to exhibit relatively large opening angles since the
beam tails radiate over proportional in a quadrupole field.
Beam positions and angles have to be adjusted precisely
in the triplet quadrupoles in order to pass the radiation fan
safely through the beam pipe to the final absorber at 25 m
distance to the IP. Beam–based alignment (BBA) methods
are directly sensitive to the magnetic field the beam expe-
riences in the quadrupoles and are therefore best suited to
diagnose the beam orbit with respect to the magnetic cen-
ters of the quadrupoles across the IR.

2 BBA FOR IR MAGNETS

In conventional beam–based alignment procedures, the
relative alignment of a quadrupole to a nearby beam posi-
tion monitor is determined by finding a beam position in
the quadrupole at which the closed orbit does not change
when the quadrupole field is varied. The final focus mag-
nets of the interaction regions of circular colliders often
have some specialized properties that make it difficult to
perform conventional BBA procedures. At the HERA in-
teraction points, for example, these properties are: (a) The
quadrupoles are quite strong and long. Therefore a thin lens
approximation is quite imprecise. (b) The effects of angu-
lar magnet offsets become significant. (c) The possibilities
to steer the beam are limited as long as the alignment is not
within specifications. (d) The beam orbit has design offsets
and design angles with respect to the axis of the low-beta
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quadrupoles. (e) Often quadrupoles do not have a beam
position monitor in their vicinity. Therefore a BBA pro-
cedure was derived which determines the relative offset of
the closed orbit from a quadrupole center without requiring
large orbit changes or monitors next to the quadrupole [1].
By taking into account the alignment angle, the sensitivity
to optical errors was reduced by one to two orders of mag-
nitude. In reference [1] the BBA measurements of all IR
quadrupoles are used to determine the global position of the
magnets and the sensitivity to errors of this BBA method is
evaluated and its applicability to HERA is shown.

Usually, BBA methods evaluate the difference orbit that
is excited by a change in the strength of a quadrupole. But
quadrupole errors around the machine might lead to a mis-
interpretation of the quadrupole offsets to be evaluated and
we therefore create a closed bump by changing the strength
of the test quadrupole and by appropriately exciting two
corrector coils.

The transport matrix G+ of a dipole with superimposed
quadrupole with a focusing strength that is changed by ∆k
can to first order be described by a matrix δ applied at the
center between two half quadrupoles g,

G+ = G + gδg + O(∆k2) , δ = ∆kl
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k refers to a focusing quadrupole strength.
When there is no dipole component superimposed to the

quadrupole, a deviation of ∆x between the beam and the
quadrupole center therefore creates a kick of strength θ =
−∆klσ+∆x and an angle ∆x′ leads to a orbit displace-
ment at the center of the quadrupole of ∆ = ∆kl

k σ−∆x′.

For an additional dipole component with curvature κ it
turns out [1] that the effective quadrupole center in the
alignment procedure is shifted so that ∆x is given by
x−z−f with the closed orbit x, the position of the center of
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When the orbit oscillation which is excited by the kick θ
and the displacement ∆ at the center of the quadrupole is
closed by two corrector coils with angles θ1 and θ2, then
one can compute ∆x and ∆x′. With the Twiss parameters
at the corrector coils and at the center of the quadrupole,
where the betatron phase is chosen to be 0, one obtains
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Beam optics distortions between the compensating kicks
and the test quadrupole lead to misinterpretation of the dif-
ference orbit and to a corresponding error of the evaluation.
It turns out that this error can already be rather large for ∆x
but it is unacceptably large for the alignment angle ∆x ′.

It is not worth trying to determine the angle alignment.
But we will assume that the angle of the orbit in the magnet

is approximately correct and we will therefore require our
compensation to lead to the design value −z

′0 of the angu-
lar alignment. While the angles �θ are measured, we assume
that the correct angles to close the bump would have been
�θ−∆�θ. The errors ∆�θ can be due to optical errors or to an
error in the measurement of the corrector kicks. Since the
errors ∆�θ are not known, we introduce an estimate ∆�θ∗

of the erroneous angle such that equation (2) leads to an
estimated alignment of

∆�x∗ = A−1[�θ − ∆�θ∗] =
(

∆x∗

−z
′0

)
. (3)

With �a2 = (A−1
2,1, A

−1
2,2) we write �a2 · [�θ − ∆�θ∗] = −z

′0.

This condition should be satisfied for a set ∆�θ∗ of angles
which is as small as possible, i.e. |∆�θ∗|2 should be min-
imal. We can use Lagrange multipliers to minimize and
finally find
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When the alignment angle is not as designed, then ∆x∗

has a systematic error, but at least for HERA this turns out
to be benign. The sensitivity to optical errors however is
reduced by one to two orders of magnitude. Only together
with this reduction of the sensitivity the BBA method leads
to satisfactory results in HERA.

3 MEASUREMENT PROCEDURE

As explained above, the relative offset of the beam in
an IR quadrupole with respect to the magnet axis can be
found by changing the quadrupole strength and minimiz-
ing the thus generated difference in the orbit around the
ring with two correctors (per plane) just outside of the in-
teraction region. In HERA, we use correction coil pairs at
75 and 101 meters away from the IP in the horizontal plane
and at 56 and 81 meters in the vertical. The beam offset is
calculated from the change in the quadrupole gradient, the
necessary current changes in the correction coils to com-
pensate for the resulting difference orbit and the transport
matrices between these three magnets.

At the beginning of the measurement, the betatron tunes
are changed to a value which leaves maximum space for in-
creasing the strength of the quadrupole. The betatron tunes
in HERA can be kept constant with a slow feed-back acting
on quadrupoles in the arcs around the ring, but the resulting
orbit changes would interfere with the BBA measurement.
A reference orbit is taken, then the quadrupole strength is
increased in steps, measuring betatron tunes and orbit dif-
ference. If a specified RMS value of the difference orbit is
reached, the orbit difference is corrected with the correc-
tor pair to better than 25 µm RMS. The beam offset in the
quadrupole is calculated and stored together with all rele-
vant machine parameters.
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The measurement can be iterated by increasing the
quadrupole strength further, or the next magnet can be mea-
sured. The BBA measurement of all quadrupole magnets
in an interaction region is fully automated using the MAT-
LAB environment at HERA [2]. The magnets are subse-
quently measured, starting at the IP and moving outward to
minimize optic errors between the quadrupole and the two
correctors used to compensate the orbit change.

This direct measurement of orbit displacements in the
magnets has been used to optimize and characterize orbits
in the interaction regions. Fig. 2 and Fig. 3 show orbits
before and after optimization for the interaction regions
of the experiments H1 and ZEUS. The beam positions are
shown on an equidistant grid with the corresponding mag-
net names listed on the horizontal axis.
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Figure 2: BBA measurements of beam positions before and
after orbit optimization across the interaction region with
the experiment H1.
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Figure 3: BBA measurements of beam positions before and
after orbit optimization across the interaction region with
the experiment ZEUS.

4 ABSOLUTE MAGNET POSITIONS

If the beam offset in all quadrupoles of an interaction re-
gion has been measured, the absolute position of the mag-
nets is determined by modeling the absolute beam orbit.
That requires knowledge of its initial conditions and all de-
flections - in bending magnets, correctors, solenoids and
offset quadrupoles. The problem has n + 2 unknowns, n
being the number of offset quadrupoles plus the 2 initial
conditions for the orbit in the given plane, but we have
only n independent measurements. There are different ap-
proaches to overcome that problem [3]. Presently we use
the method of introducing the design positions of the mag-
nets with a weighting factor as additional randbedingun-
gen [1]. Fig. 4 shows reconstructed absolute vertical mag-
net positions in the interaction region of the experiment H1,
where the common support for the left IR triplet was moved
by 0.5 mm up and down at its end towards the IP. The cor-
responding movement of the magnets is resolved with good
precision. The position of the super-conducting quadrupole
GO, the last before the IP, is calculated to be 1.7 mm too
low. We have since raised that magnet by that amount and
find reduced corrector strengths and vertically flatter orbits
(the orbits shown in Fig. 2 were taken after moving that
magnet). However, especially in the horizontal plane we
are not yet satisfied with the stability and precision of our
approach and are looking for ways to refine it.
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Figure 4: BBA reconstruction of absolute magnet positions
for different positions of the common support for the final
focus triplet.
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