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Abstract

The simulation of the motion of a particle beam in lin-
ear colliders requires fast and robust numerical algorithms.
The following approach to simulate the effect of nonlinear
space charge forces on the dynamics of space charge domi-
nated electron beams has been realized in the tracking code
Q [9]. The related tracking algorithm has to solve the rela-
tivistic equations of motion for a large number of time steps
and unknowns. The underlying physical model uses a grid–
based method for the field calculations which allows the
consideration of far more macroparticles than other meth-
ods. The numerical convergence studies presented in this
paper show the robustness of the tracking algorithm and co-
incide with theoretical results. Further, several techniques
for the construction of a fast adapted multigrid solver for
the determination of the nonlinear space charge forces are
investigated.

1 INTRODUCTION

An important task in the design and operation of future lin-
ear colliders is to simulate the motion of the particle beam
in phase space. The related tracking algorithm considering
nonlinear space charge effects in electron beams, as it is
realized in the corresponding tracking codeQ [9], has to
solve the relativistic equations of motion for a large num-
ber of time steps(∼ 1000). Its overall accuracy should be
linear in the number of unknownsN concerning comput-
ing time in order to enable a systematic convergence study.
An electrostatic model assuming piecewise constant space
charge forces has this linearity, provided that the comput-
ing time for the determination of the space charge fields is
of O(N). In addition the time integration step∆t can be
varied independently of the spatial resolution of the beam
due to static field calculation in contrast to a time depen-
dent electromagnetic Particle-in-Cell scheme [3].

For a short description of the physical problem letN be
the number of macroparticles of the beam, where the set of
macroparticles represents the distribution of all particles in
the beam. Further, let thei-th macroparticle (i = 1, . . . , N )
have the position�ri and the momentum�pi. The particle
itself has the rest massm0 and the chargeq. Then the rela-
tivistic equations of motion are given by [6]

∂�ri
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=

�pi
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with the Lorentz factorγi =
√

1 + p2
i

m2
0c2 , the electric field

�E and the magnetic flux density�B. A fast method to deter-
mine nonlinear space charge forces is to compute the elec-
trostatic potentialϕ′ as a solution to Poisson’s equation

−∆ϕ′ =
�′

ε0
in Ω ⊂ R

3

in the beam’s restframe from a charge density� ′ with the
dielectric constantε0. The computational domainΩ is con-
sidered to be longitudinally (z–direction) invariant and to
have an elliptic or polygonal cross–section in the(x, y)–
plane. With respect to the boundary an ideal conducting
pipe is assumed transversally and an open boundary lon-
gitudinally. The necessary space charge field can then be
computed by Lorentz–transformation of the electrostatic
field �E′ = −�∇ϕ′ into the laboratory frame.

The tracking algorithm has from the numerical point of
view two essential aspects: the solution of the relativistic
equations of motion and the solution of Poisson’s equa-
tion. The time integration scheme chosen for solving the
set of coupled first–order differential equations of motion
is a fifth–order embedded Runge–Kutta method [5] with
adaptive step size control. Its characteristics in phase space
are investigated for single particle dynamics. The accu-
racy of the space charge fields entering the equations of
motion is analyzed concerning its dependence on the mesh
sizeh of the finite difference grid and the relative resid-
ual of the potential. An efficient Poisson solver with op-
timal convergence rates and a linear dependence of com-
puting time on the number of unknowns is given by the
application of the multigrid technique [2]. The rectangular
grid generated by the tracking algorithm provides a good
basis for the construction of a geometric multigrid solver.
The main difficulty is the handling of the anisotropic grid
stretched in longitudinal direction which is caused by the
Lorentz–transformation (h ′

z = γhz). This circumstance
rapidly slows down the standard multigrid algorithm and
makes adaptions to the anisotropy necessary.

2 TIME INTEGRATION SCHEME

The characteristics of the Runge–Kutta time integration
scheme concerning the conservation of observables such as
the particles’ momentum and energy is investigated on the
basis of single particle dynamics (no space charge forces),
yielding the possibility to compare the numerical results to
analytically known exact solutions in position, momentum
and energy. The fifth–order Runge–Kutta method is mo-
mentum and energy conserving in the absence of forces.
Given a homogeneous electric field according to a constant
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acceleration the error in position isO(∆t5.6±0.4) as shown
in Fig. 1. It is exact in momentum for one time step, lim-
ited by round off errors only. From this result it can be
concluded that the exactness in momentum holds also for
the electrostatic multi particle problem under homogeneous
external electric fields. The method is limited concerning
energy conservation under constant acceleration with an er-
ror in energy ofO(∆t0.95±0.02).
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Figure 1: Relative error in space, momentum and energy of
a single particle after acceleration within a homogeneous

electric field ofEz = 250kV
m over a distance of 1 m.

3 FINITE DIFFERENCE SPACE
CHARGE CALCULATION

We use space–centered finite differences for discretizing
Poisson’s equation. In a momentum conserving particle
mesh scheme it is in addition necessary and sufficient to
choose identical charge assignment and force interpolation
functions [3], in our model linear (Cloud–in–Cell).

The error relative to the numerically exact solution of the
electrostatic potential of a point charge within a cube with
perfectly conducting boundaries as a function of the mesh
size is shown in Fig. 2. It is ofO(h2.11±0.04), which is in
agreement to theoretical functions [3]. The value of the
error of the electric field at the location of 32 randomly dis-
tributed particles within a spherical homogeneous charge
distribution at rest is ofO(h1.38±0.05) as expected from the
fact, that the randomized particle positions are not centered
between gridpoints. Fig. 3 shows the dependence of the
field error taken at 640 particle positions on the residual of
the potential. It is ofO(r1.56±0.06). Already a residual of
10−2 yields an error in the electric field of4 · 10−4, which
leads to a considerable saving of computing time.

4 ADAPTED MULTIGRID AS FAST
POISSON SOLVER

The tracking algorithm involves the solution of Poisson’s
equation in every time step. The rectangular grid generated
in the particle mesh scheme is used for the discretization of
the Laplacian, where the standard finite difference scheme
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Figure 2: Local discretization error of the potential and the
electric field as a function of the mesh size.
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Figure 3: Error of the electric field as a function of the
residual.

(seven–point stencil) is applied. The dimension of the re-
sulting system of equations with∼ 1 million unknowns de-
mands the construction of an efficient solver.

State of the art is the application of multigrid tech-
niques [2]. The general idea of multigrid is the com-
bination of the approximate solution of the system of
equations obtained by a few steps of a relaxation method
(e.g. Gauss–Seidel relaxation) with a coarse grid correc-
tion computed on a coarser grid. While this method has
optimal convergence rates in standard situations, it is very
slow for anisotropic problems. As mentioned in the intro-
duction, the Lorentz–transformation causes an anisotropic
grid which requires an adaption of the standard algorithm.
Three methods for the handling of anisotropies recom-
mended in literature will be investigated in the present pa-
per. The first one is the technique ofsemi–coarsening [2,
10] which doesn’t coarse the mesh of all coordinate di-
rections. A rule for the semi–coarsening in the tracking
context is: do not coarsen the mesh of the longitudinal di-
rection, if the mesh size is still two times larger than the
mesh size of the transversal direction [4]. As relaxation
method the standard red–black Gauss–Seidel iteration is
used. A second geometric multigrid algorithm keeps the
standard coarsening strategy and uses anadapted relax-
ation scheme, where in our case a plane relaxation in the
(x, y)–plane is chosen [1]. Thealgebraic multigrid algo-
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rithm (AMG) [7] which is investigated third does not use
the geometrical data of the problem for the construction of
the coarser levels but the matrix entries of the resulting sys-
tem of equations. Since AMG distinguishes between strong
and week coupled variables, the adaption to the anisotropy
is performed automatically. Thus, it can be used as black
box solver [8].

Numerical experiments have been performed with the
data of a 10 MeV beam. The charge density has Gaussian
distribution on a cylindrical pipe. The first example (see
Fig. 4) is computed on a grid with33×33×129 (=140 481)
mesh points. The related grid has a small anisotropy of
hz ≈ 3hx ≈ 3hy. The second example (see Fig. 5) has
a large anisotropy withhz ≈ 25hx ≈ 25hy and is com-
puted on a grid with65× 65× 65 (=274 626) mesh points.
The semi–coarsening strategy comes up with the best re-
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Figure 4: Several mutigrid strategies for a grid with small
anisotropy.
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Figure 5: Several mutigrid strategies for a grid with large
anisotropy.

sults (solid line): the computing time increases only lin-
early with the number of unknowns. It is ofO(N 1.12±0.16)
in agreement to a value ofO(N) in literature [5]. This is
not the case with the method of plane relaxation. A further
advantage of the semi–coarsening algorithm is the simple

implementation. The algebraic multigrid method (AMG)
has the same convergence speed as the geometric multigrid
with semi–coarsening, but the setup–phase, i.e. the deter-
mination of the coarser levels and their interaction, takes a
lot of time — even more in the case of the small anisotropy,
because more levels are built. The results of thestandard
multigrid method (MG) are given as reference (dotted line).

5 CONCLUSION

An electrostatic algorithm for the investigation of nonlinear
space charge effects in electron beams has been presented.
It has proven exact in momentum under homogeneous elec-
tric fields using a fifth–order Runge–Kutta scheme. The
accuracy of the space charge forces determined by the fi-
nite difference particle mesh scheme is ofO(h1.38±0.05) in
the mesh size and ofO(r1.56±0.06) in the residual of the
potential. In order to deal with the longitudinally strongly
anisotropic grid in the beam’s restframe, which is stretched
due to Lorentz–transformation, several adapted multigrid
techniques have been investigated. A multigrid strategy
using semi–coarsening turned out to be linear concerning
computing time in the number of unknowns and proved to
be the adequate way to transfer the robustness and speed
characterizing the standard multigrid method to the field of
application of relativistic space charge calculation.
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[1] U. Gärtel, ”Parallel Multigrid Solver for 3D Anisotropic
Elliptic Problems”, Arbeitspapiere der GMD 390, St. Au-
gustin, 1999.

[2] W. Hackbusch, ”Multi-Grid Methods and Applications”,
Springer–Verlag, Berlin, 1985.

[3] R.W. Hockney, ”Computer Simulation using Particles”,
Institute of Physics Publishing, Bristol and Philadelphia,
1994.
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