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Abstract

The use of beam position monitors (BPMs) as non-
intercepting emittance monitors has been proposed in
1983 by Miller et al. The emittance measurement relies
on the beam size dependency of the BPM signals. It is
shown that the original proposal can be improved by us-
ing movable BPMs. Changing the BPM position with a
stepping motor allows accurately calibrating the beam
size measurement. The absolute scale on the beam size
measurement is given by the scale of the stepping motor
and can be determined in the laboratory and measured in
situ. Uncontrolled changes of the beam position can be
monitored through the use of a BPM triplet. 

1 INTRODUCTION
It has been proposed in [1] that the quadrupole term in

the signal of standard four button beam position monitors
(BPM’s) can be used for a non-intercepting measure-
ments of beam size. Recent publications have shown that
the method can indeed be used successfully for measuring
beam size [2,3]. Here, we propose an improvement of the
method. It is shown that the use of BPM step movers
greatly simplifies the method. It is explained how movers
can be used for a precise calibration of the absolute scale
of beam size.

2 THEORY
We consider BPMs that consist of four pickup buttons
with an angle of S/2 between neighbouring buttons. The
pickup buttons shall be located at upper left, top, bottom,
left, and right position, as illustrated in Figure 1. The dis-
tance of a button to the BPM centre is given by a and its
azimuthal angle by T. The image current in a four-polar
beam position monitor has been calculated by Miller et al
[1] in 1983. We consider an infinitely long line current
I(r,I) at radial location r and azimuthal angle I. The im-
age current density Jimage (r,I,a,T) on a conducting cylinder
of radius a at azimuthal angle T is then:
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A multipole expansion in powers of (r/a) is performed
and the image current is integrated over all r and I. For
this a Gaussian beam distribution in r and I is assumed,
with xb and yb being the horizontal and vertical centres of
gravity and Vx and Vy being the corresponding standard
deviations.
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Figure 1  The pickup buttons are at a distance a from the
centre. The beam offsets with respect to the centre are
denoted as xb and yb for horizontal and vertical direction.

For a total beam current Ib the induced image current
J(a,T) at radius a and azimuthal angle T is calculated:
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This result is valid for beam offsets xb, yb and beam
sizes Vx, Vy much smaller than the radius of the beam
pipe. For practical applications these conditions will be
true. Note that the result differs in the sextupole term
from the result published by Miller et al. The relevant
derivation is summarised in [5]. For the considered BPM
geometry, the quadrupole signal q is constructed:
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T is the sum signal from all four buttons. The quadrupole
signal q has been calculated for point-like and for wide
buttons (covering 90 degrees around the pickup centre):
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The width of the buttons does not change the result, apart
from an overall scaling factor. This result has also been
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obtained in [3]. The quadrupole signal is sensitive to the
difference in squared beam sizes and can therefore be
used to determine the beam sizes.
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Figure 2  Two outer BPMs of a BPM triplet measure
variations of the beam position in the middle BPM. The
middle BPM is moved to measure the beam size term.
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Figure 3  qm as a function of the mover setting for example
parameters. The minimum is at xb= 0. The offset x0 was
chosen to be 2 mm in this example. The two curves corre-
spond to different values of yb. We use LEP parameters
(BPM at QL17, 94.5 GeV, a = 4.2 cm, Vx = 2.19 mm,
Vy = 0.06 mm).

3  BEAM SIZE MEASUREMENT
It is proposed to mount the BPMs on step movers that
allow moving the BPM’s independently in the horizontal
and vertical directions. The range of such movers should
be in the mm-range with step sizes of about 0.5 Pm. The
absolute scale of movements can measured in the labora-
tory and in situ. The settings of the mover shall be de-
noted by xm and ym. The true centre of gravities xb and yb

can then be expressed as:

0xxx mb �                           (6)

0yyy mb �                           (7)

x0 and y0 are arbitrary offsets. They can vary with time. To
control changes in x0 and y0 two additional BPMs can be
installed close to the movable BPM (see Figure 2). We
introduce the observable qm = C�q, where the constant C
depends on the width of the buttons. The observable qm

can then be written as:
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It is evaluated by changing the mover settings xm and ym.
The calculated response in  qm is shown in Figure 3.

The minimum of Equation 8 is obtained with xm= x0.
Varying xm and fitting the minimum of the observed qm

allows the determination of the absolute mover scale with
respect to the physical centre of the BPM. With xm= x0 the
quadrupole signal q assumes the following value:
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The vertical mover setting ym can be precisely measured
in situ and the offset y0 can be determined just as de-
scribed above for x0. The minimum value A of q is then a
simple function of the beam size difference. Miller et al.
suggested using this measure to determine beam sizes.
Unfortunately it contains a constant C’ that depends on
the BPM calibration and, as we have seen, on the BPM
button width. Therefore we consider another observable,
the zero-crossings of the qm signal. They appear at:
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These solutions do only exist for large offsets yb:
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As explained above, we can assume that ym and y0 are
known. From a measurement with appropriate vertical
offset we can obtain the observable B (compare Figure 3).
The beam size term Vx

2 – Vy

2 is then obtained:
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The absolute measurement of the beam size term Vx

2–Vy

2

does only depend on the calibration of the mover scale.
For realistic (LEP) parameters and a Pm resolution BPM,
it is estimated that the beam size term Vx

2 – Vy

2 can be de-
termined with an accuracy of at least 5%. This assumes
that the image currents from the four buttons are sampled
with equal efficiency. Large differences in the processing
of the four image currents can introduce additional errors.

Turn-by–turn (or shot-by-shot) variations of the beam
position have been a major problem for existing meas-
urements of the quadrupole signals. Those measurements
did average over many shots and the beam size measure-
ment was found to be diluted by variations of the beam
position. The usability of “quadrupole BPMs” was found
to be significantly hampered [4]. The use of state of the
art BPMs should allow to almost completely avoid this
problem. If the data is analysed turn by turn then both the
dipole and the quadrupole signals can be measured for
every passage of the beam. The effect of changes in beam
position for the quadrupole term can be measured, for
example, with two close-by BPMs.

:
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Figure 4  Results from triplet cross-calibration of BPMs.

4  BEAM EMITTANCE
In the previous section it was shown how the beam

size dependent term m is obtained. For a transport line it
has been shown by Miller et al. how the emittances are
obtained. Here we consider a storage ring. We assume
that two measurements m1 and m2 are performed with
BPMs located at two neighbouring focusing and defo-
cusing quadrupoles. We further require that there is no
source of emittance change between the two locations and
that the beta functions are accurately known (there exist
methods to measure the beta functions in a storage ring
precisely). The values Ex(1), Ey(1), Ex(2) and Ey(2) shall be
the beta functions at locations 1 and 2. The horizontal and
vertical beam emittance is denoted by Hx and Hy. It can
then be shown that the vertical beam emittance is ob-
tained from m1 and m2 as:
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The horizontal emittance is then calculated via:
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Note, that the described method for emittance determina-
tion requires that the following condition is fulfilled:
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In other words, the phase advance in the two planes must
be different. If more than two measurements are per-
formed additional information about a possible betatron
mismatch can be obtained.

 5  STATUS OF TESTS AT LEP
In the context of the LEP spectrometer two BPM trip-

lets have been installed in the LEP beamline. They are
horizontally movable and it is planned to try some beam
size measurements. Here we report some results on BPM
resolution and stability. We denote the BPMs in a triplet
as “1”, “2” and “3” with “2” as the middle position. The
triplet residual is defined as:
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For calibration purposes a series of beam rotations
about the central BPM are done, followed by a series of
parallel orbit bumps, up to r 600 Pm. The aim of the pro-
cedure is to find the calibration of “1” and “3”, relative to
“2”. In Figure 4 (top left) the reading of BPM2 is plotted
against the readings of the other two, after subtraction of
the mean BPM value. The two sets of beam movements
result in two lines which together define a plane, the an-
gles of which relative to the ideal plane z-(x+y)/2 = 0 give
the relative gains of the BPMs.

The triplet residual Rx would be zero for perfect BPMs,
but in reality has a finite value due to noise and inaccura-
cies in the gain cross-calibration. Figure 4 (bottom) shows
Rx against time before and after correction of the gains to
that of BPM2. The histogram of Rx has a V of 300 nm
after the correction, over the time of 60 min taken to
complete the sequence of beam movements. This implies
that sub-Pm relative accuracy and stability has been
achieved, the fluctuations from one BPM being around
200 nm.

 6  CONCLUSION
The use of beam position monitors (BPMs) as non-

intercepting emittance monitors was proposed in 1983 by
Miller et al. The idea relies on the beam size dependency
of the BPM signals. The original proposal can be im-
proved by using movable BPMs. Changing the BPM po-
sition with a precise stepping motor allows accurately
calibrating the beam size measurement. The absolute
scale on the beam size measurement is given by the ab-
solute scale of the stepping motor. Uncontrolled changes
of the beam position can be corrected through the use of a
BPM triplet. A BPM relative accuracy of 200 nm over
60 min was demonstrated. Tests at LEP are ongoing.
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