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Abstract

An exact invariant I has been shown to exist for gen-
eral three-dimensional Hamiltonian systems of N particles
confined within a general velocity-independent potential.
Since the invariant depends on the explicitly known tra-
jectories of the particle ensemble, it can only be obtained
after the solutions of the equations of motion have been
calculated. If the time evolution of the particle ensemble
is obtained from a computer simulation, the invariant can
no longer be expected to be strictly constant because of the
generally limited accuracy of numerical methods. The de-
viation of a numerically obtained “invariant” from a strict
constant of motion may thus be used as a posteriori error
estimation for the respective simulation.

1 EXPLICITLY TIME-DEPENDENT
HAMILTONIANS

We consider a system of a non-relativistic ensemble of N
particles of the same species moving in an explicitly time-
dependent potential, whose Hamiltonian H takes the form

H =
N∑

i=1

[
1
2 ẋ2

i + 1
2 ẏ2

i + 1
2 ż2

i

]
+ V (�x, �y, �z, t) , (1)

with �x, �y, and �z the N component vectors of the spatial
coordinates of all particles. From the canonical equations,
we derive for each particle i the equation of motion

ẍi +
∂V (�x, �y, �z, t)

∂xi
= 0 , (2)

and likewise for the y and z degree of freedom. The func-
tions xi(t) and ẋi(t) denote the i-th particle trajectory in
the x-direction and its time derivative that follow from the
integration of the equation of motion (2). A quantity

I = I
(
�x(t), �̇x(t), �y(t), �̇y(t), �z(t), �̇z(t), t

)
(3)

constitutes an invariant of the particle motion if its total
time derivative vanishes, i.e. if dI/dt = 0 along the phase-
space path representing the system’s time evolution.

2 THE INVARIANT

The invariant I as defined by (3) for the Hamiltonian (1)
follows as [1]

I = 2f2(t)H − ḟ2(t)
N∑

i=1

(
xiẋi + yiẏi + ziżi

)

+ f̈2(t)
N∑

i=1

1
2

(
x2

i + y2
i + z2

i

)
, (4)

with f2(t) representing a solution of

ḟ2(t)
(

2V +
N∑

i=1

[
xi

∂V

∂xi
+ yi

∂V

∂yi
+ zi

∂V

∂zi

])

+ 2f2(t)
∂V

∂t
+

...
f2(t)

N∑
i=1

1
2

(
x2

i + y2
i + z2

i

)
= 0 . (5)

The domain of (3), and hence the physical significance
of the subsequent equation (5), is restricted to the actual
phase-space path, defined as the one-parameter subset of
the 6N -dimensional phase-space on which the equations
of motion (2) are fulfilled.

Along the phase-space path, all terms of Eq. (5) that
depend on the particle trajectories are in fact functions
of the parameter time t only. Accordingly, the potential
V (�x(t), �y(t), �z(t), t) and its derivatives are time-dependent
coefficients of an ordinary differential equation for f 2(t).
The invariant (4) is easily shown to provide a time integral
of Eq. (5) by calculating the total time derivative of (4),
and inserting the single particle equations of motion (2).
Hence, Eq. (4) embodies a time integral of Eq. (5) if and
only if the system’s evolution is strictly consistent with the
equations of motion (2).

3 EXAMPLE

As a simple example, we investigate the one-dimensional
Hamiltonian system of an “asymmetric spring”, defined by

H = 1
2 ẋ2 + 1

2ω2(t)x2 + a(t)x3 . (6)

The related equation of motion follows as

ẍ + ω2(t)x + 3a(t)x2 = 0 . (7)

The invariant I is immediately found writing down the gen-
eral invariant (4) for one dimension and one particle with
the Hamiltonian H given by (6)

I = f2

(
ẋ2 + ω2x2 + 2ax3

) − ḟ2xẋ + 1
2 f̈2x

2 . (8)

According to (5), the function f2(t) for this particular case
is given as a solution of the third order differential equation

...
f2 + 4ḟ2ω

2 + 4f2ωω̇ + x(t)
(
4f2ȧ + 10ḟ2a

)
= 0 . (9)

Since the particle trajectory x = x(t) is explicitly con-
tained in Eq. (9), we must know it prior to integrating
Eq. (9). The trajectory is obtained integrating the equation
of motion (7).

In order to prove that Eq. (8) is indeed an invariant of the
particle motion, we may calculate the total time derivative
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of Eq. (8). Inserting the equation of motion (7), we end up
with Eq. (9), which is fulfilled by definition of f2(t) along
the given trajectory x = x(t).

Substituting ρ2
x(t) ≡ f2(t), Eq. (9) may be converted

into the alternative form of an “envelope equation”

ρ̈x(t) + ω2(t)ρx(t) − gx(t)
ρ3

x

= 0 . (10)

Eq. (10) is equivalent to (9), provided that the time deriva-
tive of the function gx(t), introduced in (10), is given by

ġx(t) = −x(t)
(
2ȧρ4

x + 10aρ3
xρ̇x

)
. (11)

Expressing the invariant (8) in terms of ρx(t), and inserting
the auxiliary equation (10), we get

I = ρ2
xẋ2 − 2ρxρ̇xxẋ + x2

(
ρ̇2

x +
gx(t)
ρ2

x

)
+ 2a(t)ρ2

xx3 .

(12)

With regard to the definition of gx(t) given by Eq. (11), we
observe that the invariant (12) reduces to the well-known
Lewis invariant [2] for the time-dependent harmonic oscil-
lator if a(t) ≡ 0, which means that gx(t) = const.
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Figure 1: Example of a numerical integration of Eq. (7) and
the subsequent numerical integration of Eq. (9).

Fig. 1 shows a special case of a numerical integration of
the equation of motion (7). Included in this figure, we see
the result of a subsequent numerical integration of Eq. (9).
Knowing both results, we are able to calculate the invariant
I given by Eq. (8), or, equivalently, by Eq. (12). Fig. 2 dis-
plays the relative deviation of the numerically obtained in-
variant I from an exact invariant, thereby providing a mea-
sure for the accuracy of the numerical method.

4 SYSTEM OF COULOMB
INTERACTING PARTICLES

A more challenging example is defined by an ensemble of
N Coulomb interacting particles of the same species mov-
ing in a time-dependent quadratic external potential, as typ-
ically given in the co-moving frame for charged particle
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Figure 2: Relative deviation of the numerically calculated
invariant (12) from the exact invariant I(0).

beams that propagate through linear external focusing de-
vices. The potential function V of this system is given by

V (�x, �y, �z, t) =
N∑

i=1

[
1
2ω2

x(t)x2
i + 1

2ω2
y(t) y2

i

+ 1
2ω2

z(t) z2
i + 1

2

∑
j �=i

c1

rij

]
, (13)

with r2
ij = (xi − xj)

2 + (yi − yj)
2 + (zi − zj)

2 and
c1 = q2/4πε0m, q and m denoting the particles’ charge
and mass, respectively. The equations of motion that fol-
low from (2) with (13) are

ẍi + ω2
x(t)xi − c1

∑
j �=i

xi − xj

r3
ij

= 0 , (14)

and likewise for the y and z degrees of freedom. We note
that the factor 1/2 in front of the Coulomb interaction term
in (13) disappears since each term occurs twice in the sym-
metric form of the double sum.

With the effective potential (13), Eq. (5) specializes to

〈
x2

〉 ( ...
f2 + 4ḟ2ω

2
x + 4f2ωxω̇x

)
+

〈
y2

〉 ( ...
f2 + 4ḟ2ω

2
y + 4f2ωyω̇y

)
+

〈
z2

〉 ( ...
f2 + 4ḟ2ω

2
z + 4f2ωzω̇z

)
+

2W (t)
mN

ḟ2 = 0 . (15)

Herein, the sums over the particle coordinates are written in
terms of “second beam moments”, denoted as

〈
x2

〉
for the

x-direction. Furthermore, W (t) stands for the electrostatic
field energy constituted by all particles

〈
x2

〉
(t) =

1
N

∑
i

x2
i (t) , W (t) =

m

2

∑
i

∑
j �=i

c1

rij
.

The invariant I for this system is given by (4), provided that
f2(t) is a solution of (15). Again, we may directly prove
that Eq. (4) with (1) and (13) is a time integral of Eq. (15)
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by calculating the total time derivative of (4) and inserting
the single particle equations of motion Eq. (14).

Substituting ρ2(t) ≡ f2(t) and defining the function g(t)
according to

g(t) =
〈
x2

〉
ρ3

(
ρ̈ + ω2

x(t)ρ
)

+
〈
y2

〉
ρ3

(
ρ̈ + ω2

y(t)ρ
)

+〈
z2

〉
ρ3

(
ρ̈ + ω2

z(t)ρ
)

, (16)

the third order equation (15) can be transformed into an
equivalent system of a first and a second order equation
for ρ(t), thereby eliminating the derivatives ω̇x,y,z(t) of the
lattice functions. Similar to the previous example, solving
(16) for ρ̈(t) means to express it in the form of an “envelope
equation”

ρ̈ + ω2(t) ρ − g(t)
ρ3 (〈x2〉 + 〈y2〉 + 〈z2〉) = 0 , (17)

with the “average focusing function” ω 2(t) defined as

ω2(t) =
ω2

x

〈
x2

〉
+ ω2

y

〈
y2

〉
+ ω2

z

〈
z2

〉
〈x2〉 + 〈y2〉 + 〈z2〉 .

It may easily be shown that Eq. (17) is equivalent to (15) if
the time derivative of g(t) satisfies

ġ(t) = 2ρ3

(
〈xẋ〉 (ρ̈ + ω2

xρ) + 〈yẏ〉 (ρ̈ + ω2
yρ) +

〈zż〉 (ρ̈ + ω2
zρ) − W

mN
ρ̇

)
. (18)

We may apply these findings to test the results of a nu-
merical simulation of a system governed by (14). As stated
above, Eq. (4) embodies a time integral of (15) — or equiv-
alently a time integral of the set (17) and (18) — if the
system’s time evolution is strictly consistent with the equa-
tions of motion (14). On the other hand, a strict consistency
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Figure 3: Second beam moment
〈
x2

〉
and f2 versus time as

obtained for 2500 simulation particles in a 3D simulation of
an isotropic periodic focusing lattice with strong Coulomb
interaction. τ denotes the focusing period common to all
three directions.

can never be accomplished if the evolution of the particle
ensemble is obtained from a computer simulation. Under
these circumstances, the quantity I as given by Eq. (4) —
with f2(t), ḟ2(t), and f̈2(t) following from (15) — can no
longer be expected to be exactly constant.

Fig. 3 displays the function f2(t) resulting from a nu-
merical integration of Eq. (15). Its coefficients

〈
x2

〉
,〈

y2
〉
,
〈
z2

〉
, and W (t) have been calculated from a three-

dimensional simulation of a charged particle beam propa-
gating through an isotropic periodic focusing lattice with
non-negligible Coulomb interaction, as described by the
potential function (13). Fig. 4 displays the relative devi-
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Figure 4: Relative deviation of the numerically calculated
invariant (4) from the exact invariant I(0) for the simula-
tion of Fig. 3.

ation of the numerically obtained invariant I from an exact
invariant for our simulation. We observe that the main de-
viations from I = const. take place at the edges of the
focusing lenses. The horizontal sections of the function
∆I(t)/I(0) — occurring along the drift spaces — indicate
that the field-free regions do not significantly contribute to
the overall error of our simulation.

5 CONCLUSIONS

For the special case of a potential V (�x, �y, �z) that is inde-
pendent of time explicitly, the Hamiltonian (1) yields the
system’s total energy E. The invariant I then reduces to
I ∝ H ≡ E. For these systems, the time evolution of E
is commonly used as accuracy test, which means to check
inasmuch the energy is actually conserved in the simula-
tion. On the basis of the general form of Eqs. (5) and (4),
this accuracy test may be performed as well for explicitly
time-dependent Hamiltonian systems.

REFERENCES

[1] J. Struckmeier, C. Riedel, “Exact Invariants for a Class of
three-dimensional time-dependent classical Hamiltonians”,
submitted for publication in Phys. Rev. Lett.

[2] H. R. Lewis, Phys. Rev. Lett. 18, 510 (1967); J. Math. Phys. 9,
1976–1986 (1968).

1407Proceedings of EPAC 2000, Vienna, Austria


