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Abstract 

    The dipole and quadrupole magnets are used frequently 
in the different types of accelerators. The solution of 
Laplace’s equation was introduced to calculate the pole 
shape based on the assumption that the pole surface is the 
equal scalar potential surface if the permeability is high 
enough [1,2]. During the calculation of the pole shape, 
one usually uses the error function to describe the 
distribution of the magnetic field or the gradient. 
However, we suffered some convergence problem in the 
solving process of the equal potential equation with the 
high order derivatives of the error function. In this paper, 
a new function is opted to describe the distribution of the 
field for the dipole or the gradient for the quadrupole. The 
solutions of the 3D Laplace’s equation determined by the 
distribution from this new function are investigated 
widely. A dipole magnet with the resulting shape of the 
pole is designed by the numerical computation to confirm 
the performance of this new function and is fabricated 
based on such a design for the experimental study.  The 
pole shape of a quadrupole magnet with the gradient 
distribution by the new function is also described in this 
paper. 

1  INTRODUCTION 

    The dipole and quadrupole magnets are playing an 
essential role in many accelerators and their transport 
lines. If the various species of ions are expected to be 
accelerated, stored and transported, e.g. the synchrotron 
for proton, light-heavy ions, polarized ions and electrons, 
the beam lines for RIB facilities, etc, the dipoles and 
quadrupoles used for these machines are provided with 
large dynamical field range. It is important to obtain the 
wide good field region through the whole dynamical field 
range. The field quality of the dipoles and quadrupoles is 
chiefly based on the pole shape. In RCNP, an effort to 
improve the field quality is made and some magnets are 
developed [3]. In this paper, an improved method for the 
dipole and quadrupole magnet design will be introduced. 

2  C-MAGNET DEVELOPMENT 

 
2.1  The solution of Laplace’s equation 

    The solution of Laplace’s equation was introduced  to  

calculate the pole shape.  In the current free region, the 

flux density B
�

can be expressed with the scalar potential 
ϕ, which is governed by the Laplace’s equation. From the 
Laplace’s equation, the equation used to define the pole 
surface can be derived if the permeability of the magnet is 
high enough. During the derivation for the equation of the 
pole surface, one uses the error function to represent the 
field distribution and know the expression for the 
equation of the pole surface written as follows. 

 
(1) 

where d is the height of gap,  Ci

µ , g(x) and G(s) are 

given by: 

g(x) and G(s) are the field distribution on the median 
plane along the x and s direction respectively. The 
coordinates system used in this paper is defined as: s, the 
distance along the reference orbit, y, perpendicular to the 
pole surface, x, on the medium plane and perpendicular to 
s. 

 We observe that the super high order derivatives of the 
error function should be calculated for solving the Eq. (1). 
And the derivatives of g(x) and G(s) are coupled together . 
Such a coupling of derivatives causes some convergence 
problems. One can truncate µ at a specific value, but the 
solution is not reasonable some time if µ is not high 
enough. To improve such a equal potential method for the 
pole shape representation, we introduce a new function to 
describe the field distribution in the no current source 
region. They are defined as: 
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Then, from 3D Laplace’s equation, we get: 
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It can be found that the derivatives are disappeared in the 
Eq. (2). So, we can get the solution with very high µ by 
the proper numerical method. We used this improved 
equal potential method to design a prototype C-magnet. A 
typical field distribution along the beam direction s 
defined by the new function is shown in Fig. 1. The pole 
shape will be fixed after the solving of Eq. (2). Fig.2 is 
extracted from the design stage, which gives the pole 
shape of the C-magnet with the different truncated µ. It 
shows us that the higher µ is necessary in the practical 
design. Because the field distribution along x direction is 
affected strongly by the coils and return yoke, one should 
not expect to use a single function to represent the field 
distribution in the whole space. We use two sets of the 
different parameters to define two distribution functions 
g1(x) and g2(x), which represent the field inside and 
outside the pole respectively.  

Fig. 1  Field distribution along reference orbit 

2.2 Numerical Design 

    Based on the resulting pole shape defined  by  Eq.  (2), 
a dipole magnet is modeled by TOSCA [4]. The modeled 

magnet is shown in Fig. 3 and the field along s got from 
TOSCA is also plotted in the Fig. 1. The field around 
s=200 mm are different with that from the function G(s). 
We think it is due to the saturation of the end piece. At 
s=350 mm, the higher field are because of the closer coils 
which also shown in Fig. 3. The good field regions for 

various field intensities are estimated by POISSON [5]. 
From Fig. 4, it can be found that the good field regions 
are improved, especially at the high field range. The good 
field regions are extended to about ±4.8 cm when the 
uniformity kept better than ±5.0×10-4. The numerical 
results show us that the pole shape, including the end 
pieces defined by Eq. (2) provides a good field 
distribution in the gap. The overview parameters of the 
final design is listed as following: 
�� Gap = 2.4 cm 
�� Width of pole = 17.5 cm 
�� Angle of bend = 90 degrees 
�� Radius of curvature = 34 cm 
�� Entrance pole rotation angle = 20 degrees 
�� Exit pole rotation angle = 20 degrees 
�� Field index n=0 
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Fig. 2  Pole shape calculated by different truncated µ 

Fig. 3  3D FEM calculation for the C-magnet 
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The fabrication of the C-magnet has been finished. The 
magnet is installed in RCNP and is ready for measure-
ment.  The experimental study will be started soon. 

Fig. 4:  The good field region for various field intensity  
               

3  POLE SHAPE OF QUADRUPOLE 

    By using the method of separation of variables, the 
solution of 3D Laplace’s equation in cylindrical 
coordinates will define an equal potential equation for the 
pole surface.  For the pure quadrupole, the scalar potential 
will be: 

(3) 
where A is a constant, G(s) is the distribution function for 
the field gradient along the beam direction. We notice that 
the derivatives of G(s) are not exactly zero at the point 
(z=0, �=45�, r=R) where R is the bore radius of the 
quadrupole. That means we cannot have a brief 
expression for the equal potential equation like that 
shown in the reference [1]. From Eq. (3), substituting for 
G(s) by the function in section 2.1, we then have: 

where J2 is the 2nd order Bessel’s function of the first kind. 
When z=0, �=45�, r=R, the potential is: 

So, we get the equal potential equation for the pole shape 
of quadrupole as: 
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In principle, the pole shape defined by this equation 
should eliminate not only the integrated, but also the local 
multipoles. Since we have not taken the effect from the 
coils into account in the above calculation, the multipoles 
will still exist in the practical quadrupole. At the center of 
the magnet, the pole shape got from this method is same 
as hyperbola. As the increasing of s toward to the both 
end of the magnet, the pole shape becomes a little bit flat 
as shown in Fig. 5.  This gives us the answer that why one 
needs to shim the hyperbola in the common experimental 
way. 

 
Fig. 5  The pole shape of quadrupole got from Eq. (4) 

4  SUMMARY
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