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Abstract

Recent measurements of the coherent synchrotron radiation
(CSR) effects indicated that the observed beam emittance
growth and energy modulation are sometimes bigger than
previous predictions based on Gaussian longitudinal charge
distributions. In this paper, by performing a model study,
we show both analytically and numerically that when the
longitudinal bunch charge distribution involves concentra-
tion of charges in a small fraction of the bunch length,
enhancement of the CSR self-interaction beyond the Gaus-
sian prediction may occur. The level of this enhancement
is sensitive to the level of the local charge concentration.

1 INTRODUCTION

When a short bunch with high charge is transported through
a magnetic bending system, orbit-curvature-induced bunch
self-interaction via CSR and space charge can potentially
induce energy modulation in the bunch and cause emittance
growth. Even though the earlier analytical results for CSR
self-interaction [1, 2] based on the rigid-line-charge model
can be applied for general longitudinal charge distributions,
since the analytical results for a Gaussian beam are explicit-
ly given, one usually applies the Gaussian results to predict
the CSR effects using the measured or simulated rms bunch
length. Similarly, a self-consistent simulation [3] was de-
veloped ealier to study the CSR effect on bunch dynamics
for general bunch distributions; however, the simulation is
usually carried out using an assumed initial Gaussian longi-
tudinal phase space distribution. Recent CSR experiments
[4, 5] indicated that the measured energy spread and emit-
tance growth are sometimes bigger than previous Gaussian
predictions, especially when a bunch is fully compressed
or over-compressed. In this paper, we explore the possi-
ble enhancement of the CSR self-interaction force due to
extra longitudinal concentration of charges as opposed to a
Gaussian distribution. This study reveals a general feature
of the CSR self-interaction: whenever there is longitudinal
charge concentration in a small fraction of a bunch length,
enhancement of the CSR effect beyond the Gaussian pre-
diction can occur; moreover, the level of this enhancement
is sensitive to the level of the local charge concentration
within a bunch. This sensitivity should be given serious
considertation in designs of future machines.

2 BUNCH COMPRESSION OPTICS

When an electron bunch is fully compressed by a magnetic
chicane, the final bunch length and the inner structure of
the final longitudinal phase space are determined by many
details of the machine design. In this paper, we investigate
only the RF curvature effect, which serves as a model to

illustrate the possible sensitivity of the CSR interaction to
the longitudinal charge distribution.

In order to study the CSR self-interaction for a com-
pressed bunch, let us first find the longitudinal charge dis-
tribution for our model bunch when it is fully compressed
by a chicane. Consider an electron bunch withN total elec-
trons. The longitudinal charge density of the bunch at time
t is �(s; t) = Nen(s; t) (

R
n(s; t)ds = 1), where s is the

distance from the reference electron, and n(s; t) is the lon-
gitudinal density distribution of the bunch. At t = t0, let
the bunch be aligned on the design orbit at the entrance of
a bunch compression chicane, with a Gaussian longitudinal
density distribution and rms bunch length �s0

n(s0; t0) = n0(�) =
1

p
2��s0

e��
2
=2�2

s0 : (1)

Here we let each electron be identified by the parameter �,
which is its initial longitudinal position

s(�; t0) = s0 = � (s > 0 for bunch head): (2)

In order to compress the bunch using the chicane, a linear
energy correlation was imposed on the bunch by an up-
stream RF cavity, along with a slight second-order energy
correlation due to the curvature of the RF wave form. The
relative energy deviation from the design energy is then

Æ(�; t0) = �Æ1
�

�s0
� Æ2

�
�

�s0

�2

(Æ1; Æ2 > 0; Æ2 � Æ1);

(3)
where we assume no uncorrelated energy spread. When
the beam propagates to the end of the chicane at t = tf , the
final longitudinal coordinates of the electrons are

s(�; tf ) = s(�; t0) +R56Æ(�; t0) + T566[Æ(�; t0)]
2 (4)

= s(�; t0)(1�
R56Æ1

�s0
)� �[s(�; t0)]

2 (5)

with � � (R56Æ2 � T566Æ
2
1)=�

2
s0. One can obtain the

maximum compression of the bunch by choosing the ini-
tial bunch length and the initial energy spread to satisfy

1�R56Æ1=�s0 = 0; s(�; tf ) = sf = ��[s(�; t0)]2:
(6)

For typical bunch compression chicane, one has R56 > 0
and T566 < 0. Therefore � > 0, which implies sf � 0
from Eq. (6). Using Eqs. (6) and (2), we have

�(sf ) =
q
�sf=� (� > 0; sf � 0): (7)

The final longitudinal density distribution can be obtained
from charge conservation n0(�)d� = n(sf ; tf )dsf :

n(sf ; tf ) =
1

p
2��sf

esf=
p
2�sfq

�sf=
p
2�sf

H(�sf ); (8)
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�sf =

q
hs2
f
i � hsf i2 =

p
2��

2
s0: (9)

where H(�sf ) is the Heaviside step function, and �sf is
the rms of the final longitudinal distribution. The final lon-
gitudinal phase space distribution can be obtained as

sf ' �(�sf=
p
2Æ

2
1)Æ

2 (10)

For example, when �s0 = 1:26 mm, R56 = 45 mm, and
Æ1 = 0:028, the compression condition Eq. (6) is satisfied.
With � = 0:08 mm�1, Eq. (9) gives the final compressed
bunch length �sf = 0:18 mm. For a realistic beam, uncor-
related energy spread Æun should be added to Eq. (3) (here
we assume Æun has a Gaussian distribution with hÆuni = 0,
and rms width Æ

rms
un ). As a result, one finds the final rms

bunch length satisfies

�
eff
s

=

q
hs2
f
i � hsf i2 = �sf

p
1 + a2; (11)

with �sf given by Eq. (9), and a = R56Æun=�sf . An exam-
ple of the longitudinal phase space distribution described
by Eq. (10), with an additional width due to Æ un 6= 0 as
given by Eq. (11), is shown in Fig.1.
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Figure 1: Example of the longitudinal phase space distri-
bution for a compressed beam with RF curvature effect

3 CSR FOR A COMPRESSED BEAM

Next, we study the CSR self-interaction of a rigid-line com-
pressed bunch in the steady-state circular motion. The lon-
gitudinal density distribution function of the bunch is �(�)
for � = s=R, with the rms angular width �� = �s=R for
the rms bunch length �s and the orbit radius R.

3.1 General Formulas

The longitudinal collective force on the bunch via space-
charge and CSR self-interaction is [1, 2]:

F�(�) =
e@(�� � �A)

�c@t

=
�Ne

2

R2

@

@�

Z 1
0

1� �
2
cos �

2 sin(�=2)
�(� � ')d' (12)

where � = v=c, � = j�j,  = 1=

p
1� �2, and � is an

implicit function of ' via the retardation relation ' = � �
2� sin(�=2). In this paper, we treat only the high-energy

case when  � �
�1 and � ' 2(3')

1=3. In this case F�(�)
is dominated by the radiation interaction:

F�(�) ' �2Ne
2

31=3R2

Z 1
0

'
�1=3 @

@�
�(�� ')d': (13)

The CSR power due to the radiation interaction is

P = �N
Z

F�(�)�(�)d�: (14)

Results for the longitudinal collective force and the CSR
power for a rigid-line Gaussian bunch are [1, 2]:

�
Gauss

(�) =
1p
2���

e
��2=2�2� (�� � 1

3
); (15)

F
Gauss
�

(�) ' Fgg(�); Fg =
2Ne

2

31=3
p
2�R2�

4=3

�

; (16)

P
Gauss ' N

2
e
2

R2�
4=3

�

3
1=6

�
2
(2=3)

2�
; (17)

where �(x) is the Gamma function, and

g(�) =

Z 1
0

(�=�� � �1)

�
1=3
1

e
�(�=����1)2=2d�1: (18)

3.2 CSR Interaction for a Compressed Bunch

The angular distribution for a compressed bunch �
cmpr

(�)

with intrinsic width due to Æun 6= 0 is the convolution of
the angular density distribution �cmpr

0 (�) with Æun = 0 and
a Gaussian distribution �m(�):

�
cmpr

(�) =

Z 1
�1

�
cmpr
0 (�� ')�m(')d'; (19)

�
cmpr
0 (�) =

1p
2���

e
�=
p
2��q

��=p2��

H(��); (20)

�m(�) =
1p

2��m�

e
��2=2�2m� ; �m� =

R56Æ
rms
un

R
; (21)

where �cmpr
0 (�) is obtained from Eq. (8). We then proceed

to analyze the longitudinal CSR self-interaction force for a
rigid-line bunch with the density function given in Eq. (19)
under the condition �� > �m� � 

�3. Combining E-
q. (19) with Eq. (13), and denoting a as the intrinsic width
of the bunch relative to the rms bunch length (0 < a < 1):

a =
�w

�s
(�w = R56Æ

rms
un ); (22)

one finds the steady-state CSR longitudinal force for a
compressed bunch:

F
cmpr
�

(�) =

Z 1
�1

F
cmpr
�0 (')�m(�� ')d': (23)

It can be shown that F cmpr
�0 (') in Eq. (23) is

F
cmpr
�0 (�) ' �2Ne

2

31=3R2

Z 1
0

'
�1=3 @

@�
�

cmpr
0 (�� ') d'

= �21=4 Fg dG(y)=dy (y = �=��); (24)
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with Fg given in Eq. (16), and

G(y) = H(�y) e�jyj=
p
2jyj1=6 �

�
2

3

�
	

�
2

3
;
7

6
;
jyj
p
2

�

+H(y) y1=6 �

�
1

2

�
	

�
1

2
;
7

6
;
y
p
2

�
; (25)

where	(a; ; z) is the degenerate hypergeometric function

	(�; ; z) =
1

�(�)

Z 1

0

e�ztt��1(1 + t)���1dt: (26)

As a result, we have

F
cmpr
�

(�) =
21=4 Fgp
2� a5=6

f

�
�

a��
; a

�
; (27)

f(y; a) =

Z 1

�1
G(a x)(y � x) e�(y�x)2=2dx: (28)

Similarly, the radiation power can also be obtained for the
compressed bunch using Eq. (14) with � cmpr(�) in Eq. (19)
and F cmpr

�
(�) in Eq. (27), which gives

P cmpr

PGauss
' 0:75

I(a)

a5=6
; (29)

I(a) = �
Z 1

�1
f

�
�

a��
; a

�
�cmpr(�)d�: (30)

Numerical integration shows that jf(y; a)jmax — the
maximum of jf(y; a)j for fixed a — is insensitive to a for
0 < a < 1. As a result, for a compressed bunch with fixed
��, we found from Eq. (27) the amplitude of the CSR force
F

cmpr
�

(�) varies with a�5=6. Therefore in contrast to the

well-known scaling law R�2=3�
�4=3
s for the amplitude of

the longitudinal CSR force for a Gaussian beam, a bunch
described by Eq. (19) has jF cmpr

�
jmax / R�2=3�

�1=2
s �

�5=6
w

with �w in Eq. (22) denoting the intrinsic width of the
bunch. Likewise, for a=0.1, 0.2, and 0.5, we found from
numerical integration that I(a) ' 0.76, 0.90 and 1.02 re-
spectively, and correspondingly P cmpr=PGauss ' 3.9, 2.6
and 1.4. This dependence of the amplitude of the CSR
force and power on the intrinsic width of the bunch for a
fixed rms bunch length manifests the sensitivity of the en-
hancement of the CSR effect on the local charge concen-
tration in a longitudinal charge distribution.

In Figs. 2 and 3, we plot the longitudinal density function
for various charge distributions with the same rms bunch
lengths (except the

p
1 + a2 factor in Eq. (11)), and the

longitudinal CSR collective forces associated with the var-
ious distributions. The amplitude of F cmpr

�
in Fig. 3 agrees

with the a�5=6 dependence in Eq. (27). Good agreement
of the analytical result in Eq. (27) with the simulation re-
sult [3] for the CSR force along the example distribution in
Fig. 1 is shown in Fig. 4.
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Douglas, G. Krafft and B. Yunn for the CSR measuremen-
t at Jefferson Lab. This work was supported by the U.S.
DOE Contract No. DE-AC05-84ER40150.
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Figure 2: Longitudinal charge distribution for a com-
pressed bunch with intrinsic width described by a, com-
pared with a Gaussian distribution. All the distributions
here have the same angular rms size ��.
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Figure 3: Longitudinal CSR force along the bunch for var-
ious charge distributions illustrated in Fig. 2.
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Figure 4: Comparison of the analytical and numerical re-
sults of the longitudinal CSR force along the example
bunch illustrated in Fig. 1. Here we have �x ' 3�s.
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