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Abstract

A general scaling law can be derived for the relative mo-
mentum deflection produced on a particle beam by fringe
fields, to leading order. The formalism is applied to
two concrete examples, for magnets having dipole and
quadrupole symmetry.

1 INTRODUCTION

During recent years, the impact of magnet fringe fields
is becoming increasingly important for rings of relatively
small circumference but large acceptance. A few years
ago, following some heuristic arguments, a scaling law was
proposed [1], for the relative deflection of particles pass-
ing through a magnet fringe-field. In fact, after appropriate
expansion of the magnetic fields in Cartesian coordinates,
which generalizes the expansions of Steffen [2], one can
show that this scaling law is true for any multipole mag-
net, at leading order in the transverse coefficients [3]. This
paper intends to provide the scaling law to estimate the im-
pact of fringe fields in the special cases of magnets with
dipole and quadrupole symmetry.

2 GENERAL MULTIPOLE EXPANSION

The formalism presented here generalizes an approach de-
scribed by Steffen and reduces to formulas he gives in the
case of dipoles and quadrupoles [2]. After appropriate ex-
pansion of the magnetic scalar potential and the use of
Laplace equation, one can show [3] that the magnetic field
components can be written in a compact form as
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In an idealized model of a magnet, only one (or in the case
of combined function magnets, two) of the multipole co-
efficients will be non-vanishing in the body of the magnet
(length Leff ) and in this region only the l = 0 terms in the
expansions survive. One can make many useful remarks
about symmetries of the skew and normal multipole coeffi-
cient in a quite straightforward way through these expres-
sions.

3 DIPOLE FRINGE FIELD

Continuing to ignore bending of the centerline in a dipole
magnet, the configuration of poles and coils is symmetric
about the x = 0 and y = 0 planes, and the coils are excited
with alternating signs and equal strength. Initially, to illus-
trate the treatment of allowed multipoles, we will permit
the magnet to be not quite ideal but with coils that respect
the dipole magnet symmetries. For this to be true, the mag-
netic field will satisfy the following symmetry conditions:
Bx is odd in x and odd in y; By is even in both x and y; Bz

is even in x and odd in y. Using the general field expansion
of Eq. (1), we get:
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Taking the field expansion up to leading order, we get:
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where b2 represents a sextupole field component allowed
by the symmetry of the “dipole” magnet (for an ideally de-
signed magnet b2 = 0) and O(3) and O(4) contain all the
allowed terms of higher orders.

For a particle traversing the magnet with a horizontal de-
viation x and vertical deviation y from the center, the im-
pulse (i.e. change of transverse momentum) imparted by
the nominal field gradient is

∆p0 = −e

∫
vzb0(0)dz ≈ −evzb0(0)L (3)

where L =
∫

b0dz/b0(0) is the effective length of the mag-
net, and b0(0) is the dipole coefficient in the body of the
“dipole” magnet.
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The impulse due to the fringe field at one end of a mag-
net is defined in this paper as the effect of field deviation
from nominal, from well inside (where the nominal mul-
tipole coefficient is assumed to be independent of z) to
well outside the magnet (where all field components are
assumed to vanish.) These will be the limits for subse-
quent integrals. To obtain explicit formulas the upper limit
of these integrals will be taken to be infinity. Exploiting
the assumed constancy of x and y along the orbit, these
integrals will all be evaluated using integration by parts.
Suppressing the entire pure dipole contribution, we have∫ ∞
−∞ B(x, y, z)dz ≈ 0 . For x = y = 0 this is an equal-

ity by definition, and for finite displacements it is approx-
imately true if (as we are assuming) the transverse parti-
cle displacements remain approximately constant. At each
magnet end, the relative change of particle position across
the fringe region is typically much smaller than the relative
change of field strength; i.e. |β ′

x,y/βx,y| � |b[1]
0 /b0|. The

momentum increments of the particle caused by the longi-
tudinal component of the magnetic field are given by
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The momentum increments caused by the transverse com-
ponent of the fringe fields are
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The total momentum increments due to fringe field are
therefore

∆px ≈ 2evzb0yy′

∆py ≈ −evzb0yx′ . (6)

The factors xx′, yy′, xy′, and x′y can be averaged as fol-
lows. By the standard “pseudo-harmonic” description of
betatron motion, letting Sx,y = sin ψx,y, Cx,y = cosψx,y,
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and the same for y, y ′. Using the results 〈C2
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where f1(β′) = 1 + 3β′2/4, f2(β′) = 1 + β′2/4, and
β′ = dβ/dz and the symbol 〈 〉 denotes the average over

betatron phase. The ratio between the momentum incre-
ment produced by the fringe field to that produced by the
non-fringe field is approximately
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For magnets in non-critical locations (which is to say most
magnets) the values of f1 and f2 are in the range from 1
to 2, so a “back of the envelope” estimate of the impulse is
given by

〈|∆p⊥|
〉〈|∆p0|
〉 ≈ ε⊥

L
, (10)

where ε⊥ is the rms beam transverse emittance. Often this
ratio is so small as to make neglect of the fringe field de-
flections entirely persuasive. The simplicity of the formula
is due to the fact that the fringe contribution is expressed
as a fraction of the dominant contribution. Note that, as
stated before, this formula applies to each end separately,
and does not depend on any cancelation of the contribution
from two ends. The case in which fringe deflections are
likely to be most important is when β ′

x or β′
y is anomalously

large, for example in the vicinity of beam waists such as
at the location of intersection points in colliding beam lat-
tices. In this case, and by just keeping the dominant term
of (9) the deflections can be approximated by
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where β′
max stands either for β ′

x or β′
y .

4 QUADRUPOLE FRINGE FIELD

The configuration of poles and coils in a quadrupole mag-
net is symmetric about the four planes x = 0; y = 0; x =
y; x = −y and if the coils are excited with alternating
signs and equal strength, the magnetic field will satisfy the
following symmetry conditions: Bx is even in x and odd in
y; By is odd in x and even in y; Bz is odd in both x and y;
and Bz(x, y, z) = Bz(y, x, z). As before, we may express
the field components as:
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The field expansion can be written as
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where b1(z) = ∂Bx

∂y |x=y=0 = ∂By

∂x |x=y=0 is the transverse
field gradient at the quadrupole axis, and O(4), O(5) con-

tain all the higher order terms. Note also that b3 = −b
[2]
1 /2,

due to the field symmetry. For quadrupoles, common no-
tations are g(z) ≡ b1(z) and g0 ≡ g(0) ≡ b1(0). For a
particle traversing the magnet with a horizontal deviation
x and vertical deviation y from the center, the momentum
increments produced by the nominal field gradient are

∆px0 = −evzg0xL, ∆py0 = evzg0yL (13)

whereL =
∫

g(z)dz/g0 is the effective length of the mag-
net, and g0 is the gradient in the body of the quadrupole
magnet. Similar to the case of dipole magnet, sup-
pressing the quadrupole contribution from B, one obtains∫ ∞
−∞ B(x, y, z)dz ≈ 0 i.e. the integrated effect of the

longitudinal component of the fringe field across the en-
tire quadrupole magnet is small if (as assumed throughout)
the particle transverse displacements remain approximately
constant. At each magnet end across the fringe field re-
gion, the relative change of particle position is typically
much smaller than the relative change of field strength, i.e.
|β′

x,y/βx,y| � |g′0/g0| . The momentum increments of the
particle contributed from the longitudinal component of the
magnetic field are
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The momentum increment produced by the transverse
component of the fringe fields are
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Combining the contributions, the total momentum incre-
ments due to fringe field are
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Again, by using the standard “pseudo-harmonic” de-
scription of betatron motion and assuming uncorrelated x
and y motion, one obtains the ratio between the momentum

increment produced by the fringe field to that produced by
the non-fringe field as〈|∆px|
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where f3(β′) = 1+5β′2/4 and the bar over the β functions
denotes their average on the body of the magnet.

For quadrupoles in non-critical locations, the same as-
sumptions as were made for dipoles yields “back of the
envelope” estimate 〈|∆p⊥|

〉〈|∆p0|
〉 ≈ ε⊥

L
. (18)

The same estimate is therefore applicable to both erect
dipole and erect quadrupole deflections. As was true for
dipoles, the fringe fields of quadrupoles become most im-
portant near beam waists where the β ′s are large. In that
case, the fractional deflections become, as before,〈|∆p⊥|

〉〈|∆p0|
〉 ≈ ε⊥

L
β′

max , (19)

where β′
max stands either for β ′

x or β′
y . Remarkably, it can

be shown that this estimate is true for every multipole mag-
net [3].

5 CONCLUSION

We have shown in two concrete examples that the relative
momentum deflection due to magnet fringe-fields, to lead-
ing order, is proportional to the transverse emittance and
inversely proportional to the effective length of the mag-
net, in cases where the magnet is not in a critical location,
i.e there is no violent variation of the optical functions. If
the above is not true, the scaling is modified by just a factor
of the maximum β ′. These scaling laws are in agreement
with previous estimations [1] and can be proved for any
multipole magnet [3].
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