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Abstract

In this paper we describe the progresses achieved in the ap-
plication of modern Hamiltonian dynamics tools, like fre-
quency map analysis, to the problem of beam halo forma-
tion in a high intensity proton linac. In particular we dis-
cuss the extension of the approach introduced for a contin-
uous beam in a FODO channel to a realistic linac, consid-
ering the problems connected with longitudinal dynamics
and acceleration.

1 INTRODUCTION

One of the big challenges of the new generation of high
power proton linacs is the control of beam losses down to
a very low percentage. These losses are associated to the
presence of a beam halo, populated by very few particles
at large distance from the average beam dimensions. It is
generally recognized that one of the main mechanism that
generates beam halo are the nonlinear single particle reso-
nances driven by the space charge.

These effects can be well described using the Frequency
Map Analysis (FMA)[1] for the test particle and suppos-
ing that the core of the beam follows a known dynamics
(Particle-core model). In a previous paper[2] we have sim-
ulated the 2D dynamics of a mismatched beam propagating
in a FODO channel. One of the outcome of this analysis
was that the dynamics of the test particle is better confined
if the horizontal and vertical tunes are not equal (the aver-
age cross section of the beam is not round), since in this
case the strong resonance ν1 = ν2 can be avoided.

In a linac the particle dynamics is intrinsically 3D, since
the three tunes are comparable. We therefore extended our
analysis assuming an ellipsoid uniformly populated, even
if this case does not correspond to a regular self-consistent
solution of the Poisson-Vlasov problem. As the first step
we assumed cylindrical symmetry (solenoid focusing) and
RF focusing without acceleration [3]; the space charge term
for a bunch with cylindrical symmetry is calculated using
the form factor f(p)[4].

In this paper we extended the space charge calculation a
general ellipsoid (three different single particle tunes), in-
troducing a generalized form factor, which allows to com-
pute the envelope modes in the general case. One of the
aims is to explore the advantages of using three different
tunes. We therefore give an example of FMA for a mis-
matched bunched beam in a FODO channel (with RF fo-
cusing).

2 PARTICLE-CORE MODEL

We consider an elipsoidal bunch uniformely populated
whose equation reads
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where (x1, x2) are the transverse coordinates and x3 is the
longitudinal coordinate (distance respect to the reference
particle). The beam is focused transversally by magnetic
quadrupoles and longitudinally by RF cavities so that the
axis aj are functions of position s. The potential of the
charge distribution is
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where N is the total number of particles in the bunch and
the variable χ is 0 if (x1, x2, x3) is an internal point to the
ellipsoid (1), and is otherwise defined as the positive solu-
tion of the equation
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The single particle equations of motion can be written in
the form
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â2
â1
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where µ = 3Ne2/(4πε0mc2β2), βc is the particle veloc-
ity, k is the RF wave number,I0(kr) and I1(kr) are the
modified Bessel functions, the symbol ′ denotes the deriva-
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√
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we have introduced the form factor
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(5)
Respect to the form factor defined in the literature [4] for an
ellipsoid with a cylindrical symmetry, one has the relation
F (p, p) = f(p). We remark the other equalities coming
from the symmetry and the gaussian theorem
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To complete the PC model, we have computed the en-
velopes equations by linearizing the single particle equa-
tions (4)
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where j, i, h is any permutation of the indexes (1, 2, 3),

V = a1a2a3, εj = 5
√
〈x2
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i 〉 =

a2
i /5. In the case of a periodic magnetic lattice of length
L it exists a periodic solution of the system (7) (matched
case) and it is possible to introduce the Poincarè map of the
system (4) and the phase advance per period ν j .

3 ENVELOPE MODES

If the deviations ∆aj from the periodic envelopes are
small, they can be calculated from the linearization of (7).
In particular if the focusing is smooth (νj � 1/4), one can

directly calculate the equilibrium envelopes aj =
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and the zero space charge tunes:

ν0j =

√
ν2

j +
µL2

4π2V
F

(
aj

ai
,
aj

ah

)
(8)

The envelope modes are solutions of the system:
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The functionG(p, q) is defined as:
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∫ 1
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and it appears in the derivatives of the formfactor (5) ac-
cording to
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The functionG has the properties

p2G(p, q) = G(1/p, q/p)
(1 − p2)G(p, q) +(1 − q2)G(q, p) = 3F (p, q) − 1(12)

The first equation (12) assures the Hamiltonian character of
the system (7) and the matrix H is symmetric. The eigen-
values and the eigenvectors of the matrix H define the en-
velope frequencies and the envelope modes that influence
the single particle dynamics in the unmatched cases.

We explicitly compute the envelope frequencies
(α1, α2, α3). For a symmetric circular elipsoidal bunch
(a1 = a2), the matrix H simplifies according to
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and there exists a quadrupole mode ∆&a =
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and the other two modes have cylindrical symmetry.

4 A SIMPLE MODEL

For the numerical simulation we have chosen a FODO cell
where two thin lens RF cavities are inserted. We have con-
sidered a stationary beam in the nonrelativistic case. The
main parameters of the FODO cell are reported in the ta-
ble 1. The spacecharge parameter µ is fixed at 10−9m that

Table 1: Nominal Case

Quadrupole (m−2) emitt. (m) tunes
Kf = 14 ε1 = 10−6 ν01 = 0.1943
Kd = 13 ε2 = 10−6 ν02 = 0.1585
Kz = 25 ε3 = 10−6 ν03 = 0.1131

corresponds to a tune depression � 90%, k is 6πm−1, and
L = 1m. In the table 2 we compare the single particle
tunes and the envelope frequencies computed in the smooth
approximation and the FFT transform of the numerical or-
bits. In the figure 1 we show the FFT transform of the

Table 2: Frequencies and modes

Mode Smooth FFT
ν1 0.1747 0.1746
ν2 0.1364 0.1374
ν3 0.0902 0.0902
α1 0.3674 0.3679
α2 0.2945 0.2947
α3 0.2039 0.2027

projection on the plane (x1, x
′
1) of a single particle orbit in

a mismatched case.
We have shown [2] that the FMA can be applied to study

the phase space in the mismatched case. The basic idea of
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Figure 1: FFT of a single particle orbit projected in the
(x1, x

′
1) plane in the mismatched case; the integer vectors

give the linear combinations n1ν1 +n2ν2 +n3ν3 +n4α1 +
n5α2 + n6α3 which define the Fourier spectrum.
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Figure 2: FM of the transverse phase space for the matched
case; the straight lines correspond to the resonances n1ν1+
n2ν2 − n = 0

the FMA is to compute a transformation between the orbits
and the frequency space whose regularity properties are di-
rectly related with the geometry of the phase space. We
have considered a section at x3 = x′3 = 0 of the bunch
and we have distributed an uniform grid of points on the
plane (x1, x2) to explore the phase space structure out-
side the bunch up to 3aj emittances. In the figure 2 we
plot the FM of the orbits whose initial point is one of the
grid points in the matched case. The regular distribution
of the points in the frequency space is due to the regular-
ity of the dynamics and the low order resonances (straight
lines) are well separated in the phase space. In the figure
3 we plot the same FM in the mismatched case. We re-
mark that a large chaotic region appears in the phase space
space due to the crossing of the resonances 2ν1 − α1 = 0
and 2ν2 − α2 = 0, but no resonance is excited between
the tunes and the third envelope frequency α3. Indeed a
mismatch on the horizontal envelope does not excite the
third envelope mode as it can be check from the smooth ap-
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Figure 3: FM of the transverse phase space for the un-
matched case (10% of mismatched on the horizontal en-
velope); the straight lines correspond to the resonances
n1ν1 + n2ν2 + n3α1 + n4α2 + n5α3 − n = 0

proximation (the eigenmodes are (0.996, 0.0848, 0.0413),
(−0.0875, 0.994, 0.0689), (−0.0352,−0.0722, 0.997) ).

5 CONCLUSION

This preliminary study show that the FM can be applied
to analyze the phase space of the 3 dimensional Particle
in Core model in the mismatched case. The FMA gives
informations of the nonlinear resonances and the chaotic
regions that dominate in the phase space. A 3 dimensional
plot of the FMA and a stability study of the chaotic region
by means of a tracking program is a work in progress.
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