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Abstract

The trajectories for electromagnetic propagation within
the Michelson interferometer may be described by four
parameters (space, time, wavelength and phase). We
show by a simple scheme that there are discrete solutions
for the relative velocity and also that there is a minimum
value for the relative velocity that can be measured with
the interferometer.

1  INTRODUCTION
The Michelson interferometer has always been

important in the study of electromagnetic propagation. It
is usually assumed that there are only continuous
solutions for the space and time measurements, given by
the Lorentz equation. In this work, considering four
parameters to define the propagation (space, time,
wavelength and phase) we show that discrete solutions
may be achieved.  In addition, we show that there is
always a minimum velocity that can be measured by the
interferometer.

2  TIME MEASUREMENT

2.1  Time measurement by light rays

   Consider the geometrical scheme shown in Fig.1. O'
and  O are at a distance L  from a perfect plane mirror
and O' is moving from  right to left with constant velocity
v .   A is the space-point where the coincidence instant
position O ≡ O' in which a simultaneous emanation of
light occurred.  B is the O' position after a time interval
∆τ , measured by O'.    The light propagation and the
space are considered to be isotropic in all directions.
   The light signal will be detected by O after a minimum

interval of time )Lct( 12�
−=  that light takes to travel

the path  A-Co normal to the mirror surface, and back.
   The light can reach O' at the space-point B by different
angle reflections at the mirror, as for instance by the rays

A-C1-B, A-C2-B, etc, only if O' is traveling at a velocity
c<v .  The intensity of each ray is the same [1].   For

higher  velocities, i. e. c>v   no light ray will reach O',
even the direct ray.

Figure 1: The time delay from the emitted and reflected
rays is compared by two observers.

Two equations can be formulated to calculate the
interval of time τ∆  that light  will be  detected  by O' at
point B.  The first equation is obtained by considering the
time spent for the light to travel its path by any mirror

reflection path A-Cj-B,
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where  the subscript (j) denotes a particular reflection

path given by the angles j1θ  and j2θ . The second

equation is given by the time that observer O' spends in
traveling the path A-B:

( )jjL 21 tantanv θθτ +=∆                 (2)

Thus, combining eqns (1) and (2),
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    Fig. 2 shows a parametric plot of this transcendental
equation. One can easily see that besides the trivial

condition, i.e. θθθ == jj ,2,1  an infinite number of

solutions given by angles jj ,2,1 θθ ≠  are possible.
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2.2  Phaseless time measurement

   Regardless of the phase and with θθθ == jj ,2,1 , we

may write from equations (1)  and (2)
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where the subscript (z) is introduced in the above
equation to indicate the time measurement independently

of the phase ( zτ∆ ).   Therefore,  the ratio of the time

intervals as measured by O and O' is given by
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which is the well-known Lorentz equation.

Figure 2: Parametric solution of Eqn (4).  Solutions for

jj ,2,1 θθ =  (straight line) and jj ,2,1 θθ ≠   (curved lines)

are shown.

2.2  Time and phase measurement

   For the phase measurement, one also needs  to assume

the condition that the initial phase ( iφ ) measured by the

two observers at the coincidence instant position  O ≡ O'
is the same.  As a consequence, the final phase measured

by O and O' ( fφ   and '
fφ  , respectively)  will be

determined by the respective path lengths of the light
trajectories.

   First let us consider only '
ff φφ =  regardless the

initial phase iφ .  Owing to the difference between the

optical path A-Co-A and any other optical path A-Cj-B,
O' will detect the light ray with the same phase of O only
if
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...,m 21=
where λ   is the wavelength of light  (the 0=m
condition is excluded since it leads to the trivial case of
v  = 0).

    Writing the mirror distance in wavelength λ   units

( R, ∈= kkL λ ) equation (6) becomes
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   For  "synchronized phase detection" the observer O'
must be at point B at the same instant the reflected light
ray reaches him.   Combining equations (3) and (7),  the

angles ( )jj 21 , θθ   are be given by
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where   
k

m

2
1+=α .

The  general solution yields two trajectories of equal

lengths with angles ( )jj 21 ,θθ  and

( )jjjj 112211 , θθθθ == ++ .  The ratio of time

intervals measured by O and O' can be written as
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where the subscript ( P ) in Pτ∆   indicates a time

measurement  by O' in phase with O.

Introducing  equations (3) and (7) into equation (10),

Proceedings of EPAC 2000, Vienna, Austria902



ατ
=+=

∆
∆

k

m

t
P

2
1                  (11)

One may observe that, unlike what happened in equation
(5)  the  mirror distance (k)  or the  number of
wavelengths (m) is not eliminated in this equation.

3  COMPARISON OF PHASE AND
PHASELESS MEASUREMENTS

   From equations (11) and (8) (Lorentz equation) we
have
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The two solutions are coincident only for

v

c
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and for this specific case

1
21 cosarc −== αθθ                    (14)

4  CONCLUSIONS
   Since both observers will measure a phase reversion
(� ) due to the mirror reflection let us consider the phase

measurement with '
ff φφ = = iφ + � .   For the static

observer O the "resonant" condition is attained only when
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Imposing this condition on equations (13) and (14) one
obtains,
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Thus, the possible values of velocities are related to the
integers m and n.  A  diagram of the distribution of the
velocities that are solutions of the Lorentz equation and
also phase-locked solutions for the two independent
observers, is sketched in Fig.3. The discreteness
decreases when the mirror-observer distance or the

reflection angle is increased (from $0=θ  to
$09→θ ), which is equivalent to an increase in the m

number.  It is important to observe that for each condition

there is a minimum value of velocity that may be
measured, given by m = 1.

Figure 3: Diagram of the moving observer’s O' velocities
that are in accordance to the Lorentz equation and to the
phase-locked measurements.

     The last column of Fig.3 corresponds to the typical
experimental parameters used in the Michelson-Morley
experiment.  The optical path, corresponding to the
“mirror to observer distance” was  11 meters and the
wavelength, λ = 590 nm [2],  so we have

71 10723�2 ×== − .Ln .    This set-up leads to a
“quasi-continuum” range of solutions, shown in Fig.3 in
yellow. Discrete solutions will be characteristic only of
high m values, as is sketched by the red lines.
   It is important to emphasize that using these typical
parameters, we obtain directly from equation (16) that the

minimum detectable velocity is c. 41032v −×= , which
is a value above of the average value of the Earth velocity

around the Sun ( c. 410980v −×= ).
    In conclusion, by applying a simple but strong scheme
of space, time and phase matching in a Michelson
interferometer it was possible to predict its velocity
discreteness and to calculate its minimum measurable
velocity.
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