DISPERSIVE ELECTRON COOLING AT THE HEIDELBERG HEAVY ION STORAGE RING TSR

M. Beutelspacher, M. Grieser, D. Schwalm, A. Wolf, MPI für Kernphysik, Heidelberg, Germany
K. Noda, NIRS, Chiba, Japan

Abstract
At low electron-ion relative velocities the cooling rates due to the electron cooling force differ by a factor of $4 \cdot 8 \ [1]$. By dispersive electron cooling, it is possible to transfer longitudinal cooling rate into horizontal cooling rate. In this scheme, a horizontal gradient in the longitudinal cooling force leads to a cooling or heating rate due to dispersive coupling. This gradient can be achieved by displacing the electron beam with respect to the ion beam, exploiting the parabolic velocity profile of the electrons because of the space charge. Operating the TSR with a somehow higher dispersion $D_S = 1.63 \text{ m}$ in the interaction region, longitudinal cooling force and transverse cooling rates for low electron-ion relative velocities were measured in agreement with a simple model, taking into account the electron density and dispersion.

1 PRINCIPLE OF DISPERSIVE ELECTRON COOLING

The principle of dispersive cooling is shown in figure 1. A change in the longitudinal momentum of a stored ion Δp_\parallel leads to a horizontal displacement of the closed orbit due to dispersion:

$$\Delta x = x_D = D_S \cdot \frac{\Delta p_\parallel}{p_0} \tag{1}$$

p_0 is the longitudinal momentum of the ion in the laboratory frame, the proportionality factor D_S is called the dispersion. A positive change Δp_\parallel, which is transferred to the ion ring outward reduces the betatron amplitude and therefore damps the betatron oscillation. A positive momentum change experienced ring inward excites the horizontal oscillation. Assuming a horizontal gradient of the longitudinal cooling force a net effect of this process arises [2]:

$$\frac{1}{\epsilon_x} \frac{dx}{dt} = - \frac{D_S}{p_0} \eta_e \frac{dF_\parallel}{dx} \tag{2}$$

ϵ_x is the horizontal emittance, p_0 the average longitudinal momentum of the ion beam in the laboratory frame and $\eta_e = 1.2 \text{m}/55.4 \text{m}$ is the fraction between the interaction length and the circumference of the TSR. A horizontal gradient of the longitudinal cooling force is achieved by displacing the electron beam with respect to the ion beam because of the parabolic velocity profile of the electrons due to the space charge, as shown in figure 2:

$$\langle v_r(r) \rangle = v_0 + \alpha_D r^2 \tag{3}$$

v_0 is the velocity on the axis of the beam in the laboratory frame, n_e is the electron density, m_e the electron mass and $\alpha_D = e^2 n_e / (4 \epsilon_0 m_e v_0)$.

Figure 1: Principle of dispersive cooling. A positive change in the longitudinal momentum Δp_\parallel, transferred to the ion ring outward, shifts the closed orbit towards the outer part of the ring and therefore damps the horizontal betatron oscillation.

Figure 2: Parabolic velocity profile of the electrons due to the space charge. By displacing the electron beam with respect to the ion beam, a horizontal gradient of the longitudinal cooling force arises.

selves closer to the outer part of the ring (on the “right” side respectively, compare figure 2) interact with faster electrons and are accelerated. Ions, which are closer towards the inner part of the ring, interact with slower electrons and are therefore decelerated. By this means a horizontal gradient of the longitudinal cooling force arises $dF_\parallel/dx \approx \alpha_\parallel \cdot 2 \alpha_D x$, where α_\parallel is the longitudinal friction coefficient $\alpha_\parallel = -dF_\parallel/dv_\parallel |_{v_1=0}$.

530
Proceedings of EPAC 2000, Vienna, Austria
2 EXPERIMENTAL PROCEDURE

In order to study dispersive electron cooling, the electron beam is horizontally displaced with respect to the ion beam. A horizontal (vertical) displacement X (Y) of the electron beam leads to a higher ion beam velocity and therefore to an additional displacement x_p due to dispersion ($X > 0$ should mean displacing the electron beam towards the inner part of the ring). The change in the revolution frequency is given by:

$$\frac{\Delta f}{f_0} = \eta \frac{\Delta p_i}{p_0}$$

(4)

$\eta = 0.89$ for the standard mode of the TSR. Using equations (1), (3) and (4), the change in the revolution frequency due to a horizontal (X) or a vertical displacement (Y) is then given by:

$$\Delta f(X) = \eta \frac{f_0}{D_S} \cdot \left\{ C - X - \sqrt{C^2 - 2CX} \right\}$$

(5)

$$\Delta f(Y) = \eta \frac{f_0}{D_S} \cdot \left\{ C - \sqrt{C^2 - Y^2} \right\}$$

(6)

$C = v_0/(2\alpha_D D_S)$. As $C \gg X$ and $C \gg Y$, developing the roots in (5) and (6) yields:

$$\Delta f(X) \approx \eta \frac{f_0}{v_0} \alpha_D \frac{X^2}{2} \cdot \left(1 + \frac{X}{C} \right)$$

(7)

$$\Delta f(Y) \approx \eta \frac{f_0}{v_0} \alpha_D \frac{Y^2}{2} \cdot \left(1 - \frac{Y^2}{4C^2} \right)$$

(8)

The electron beam is displaced in the horizontal direction by using the steerer S2X. The bit values are proportional to the displacement:

$$X = c_X \cdot S2X[\text{bits}] + d_X$$

(9)

Therefore it is possible to calibrate the displacement by recording the revolution frequency as function of the steerer strength. The measurements were performed using a 12C$^{6+}$ beam at an energy of 73.3 MeV. The parameters for the electron cooler setup were chosen as the following: $n_{e} = 8.0 \cdot 10^6 \text{ cm}^{-3}$, $B_{\text{cool}} = 418$ Gauss, 9.6 times expanded electron beam. The revolution frequency as function of a horizontal displacement is shown in figure 3. A function according to (5) is drawn as solid curve, yielding $c_X = -1.29 \cdot 10^{-2} \text{ mm/bit}$ as fit parameter.

A parabolic function is drawn as dashed curve only taking into account the space charge of the electron beam and neglecting the additional displacement x_D.

The revolution frequency as function of a vertical displacement Y also allows the calibration of the displacement and shows no significant deviation from a parabola, as expected.

Starting from well aligned and centered beams the collective rotation of the electron beam due to space charge and the longitudinal magnetic guiding field has to be taken into account. Displacing the electron beam horizontally (vertically) acquires reoptimizing the vertical (horizontal) angle of the electron beam.

Rotating the standard lattice of the TSR about an angle of 90° in the horizontal plane, a value of $D_S = 1.63 \text{ m}$ is achieved in the cooling region, compared to $D_S = 0.3 \text{ m}$ for the standard mode.

3 COOLING FORCES AND COOLING RATES

For low relative electron-ion velocities the longitudinal cooling force is measured directly with the aid of an induction accelerator [3]. From this measurement the longitudinal friction coefficient $\alpha_{||} = -dF_{||}/dv_{||} | v_{||} = 0$ is evaluated.

Studying the cooling process of ion beams having small initial diameters, i.e. low transverse velocities in the cooling region, with the aid of the beam profile monitor [4], it is possible to measure the transverse cooling rates $1/\tau_{x,y}$, which are related to the transverse friction coefficients $\alpha_{x,y} = m_i/\eta_{e} \cdot 2/\tau_{x,y}$ [1]. m_i is the ion mass and the factor 2 results from betatron oscillations.

Displacing the electron beam in the vertical direction, the longitudinal friction coefficient and the transverse cooling rates are found to be independent of the vertical displacement, as expected, since there is dispersion only for the horizontal degree of freedom. They amount to $\alpha_{||} = 6.57 \cdot 10^{-4} eV s/m^2$ and $1/\tau_x = 23.1/s$, $1/\tau_z = 25.1/s$.

A different situation occurs, displacing the electron beam horizontally. The longitudinal cooling force on an ion moving with $v_{||}$ in the laboratory frame is given within the linear regime of the force by:

$$F_{||}(v_{||}; x) = -\alpha_{||}(v_{||} - \langle v_{e}(x + \Delta x_D) \rangle)$$

(10)
$x = X + x_D$ denotes the horizontal distance between the closed orbit of the ion and the center of the electron beam, Δx_D is the additional horizontal displacement due to dispersion $\Delta x_D = D_S v_0 || / \langle v_e(x) \rangle$; $v_0 || = v_0 || - \langle v_e(x) \rangle$. Neglecting terms of the order of Δv_1 to Δv a closed orbit of the ion and the center of the electron beam, the measured longitudinal friction coefficients are shown in figure 4 as squares. A dashed curve is drawn according to (12), for $\alpha ||$ the mean value of $6.6 \cdot 10^{-4}$ eVs/m2 for the two measurements at $x = 0$ is taken. The experimental data are in good agreement with (12).

\[F_\parallel (v_\parallel ; x) = -\alpha_\parallel (x) \cdot v_\parallel \] \
with \[\alpha_\parallel (x) = \alpha_\parallel \cdot \left(1 - \frac{2\alpha_D D_S}{\eta_0(x)} \right) \] \
v$0(x)$ denotes the velocity, where the electron cooling force vanishes, $v_0(x) = \langle v_e(x) \rangle$.

The transverse cooling rates as function of x are shown in figure 5 as filled squares. They increase for positive x and decrease for negative x. Taking into account, that the cooling rate is related to the rms beam width σ, equation (2) is rewritten:

\[\frac{1}{\tau_x, disp} = \frac{\alpha_0}{\eta} \cdot \frac{\alpha_D D_S}{\eta_0} \cdot \alpha || \cdot x \] \
\[\frac{dF_\parallel}{dx} \] has been approximated by $dF_\parallel / dx = \frac{dF_\parallel}{dx} \left[-\alpha_\parallel (x) \left(v_\parallel - \langle v_e(x) \rangle \right) \right] \approx \alpha_\parallel \cdot d/dx \langle v_e(x) \rangle = \alpha_\parallel \cdot 2\alpha_D x$.

A function $1/\tau_x = 1/\tau_x(x = 0) + 1/\tau_x, disp$ is drawn as solid line, describing the horizontal cooling rates very well. The offset $1/\tau_x(x = 0)$ was fitted to the data, amounting to $1/\tau_x(x = 0) = 22\cdot 1/s$ and $1/\tau_x, disp$ was calculated according to the experimental values with (13).

\[\text{REFERENCES} \]

