

... for a brighter future

A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

Physics Requirements for LINAC Stabilization and Technical Solutions

John Carwardine

Customary disclaimer....

Examples come only from pulsed lepton linacs (two FELs, two colliders)

- One is being commissioned, one is being constructed, two aren't (yet)

Outline

- Preliminaries
- Linac end-user expectations
- Recent stability requirements
- Example solutions
 - Magnet stabilization
 - Beam-based feedback
 - Fast trajectory control
- Wrap-up

EU-XFEL: 20GeV SC linac (~1.6km)

ILC: 2x 250GeV SC linacs (2x ~11km)

Argonne

CLIC: 2x 1.5TeV NC linacs (2x ~21km) (+ drive beam linacs)

A few design parameters

	ILC	CLIC	EU-XFEL	LCLS	units
Energy	500 CM	3000 CM	20	13.6	GeV
RF frequency	1.3	12	1.3	12	GHz
Linac rep rate	5	50	10	120	Hz
Beam pulse length	970	0.15	650		us
Bunches/pulse	2670	312	3250	1	
Charge/bunch	3.2	0.6	1.0	1.0	nC
Bunch length	300	44	25	20	um
Luminosity	2	5.9			10 ³⁴ cm ⁻² s ⁻¹
Horiz. beam size at IP	640	45			nm
Vert. beam size at IP	5.7	0.9			nm
Peak current			5	3.4	kA
Slice emittance			0.9	1.2	mm-mrad

XFEL Principle

Linac based Self Amplification of Spontaneous Emission (SASE) Free Electron Lasers (FELs) in the X-Ray regime (~0.85 - 60 Å)

Electron bunch modulated with its own synchrotron radiation field ⇒ micro-bunching ⇒ more and more electrons radiate in phase until saturation is reached

Requires excellent electron beam quality:

- low (slice) emittance
- low energy spread
- extremely high charge density

Winni Decking

Colliders Squeeze as much as possible to get the highest luminosity

Luminosity (cm⁻² s⁻¹)
$$L \approx \frac{n_b N^2 f_{rep}}{A} H_D$$

- n_b = bunches / train
- *N* = particles per bunch
- f_{rep} = repetition frequency
- A' = beam cross-section at IP
- H_D = e+/e- enhancement factor

Requires excellent beam quality:

- Extremely high particle densities
- Bunches colliding at the focal point

Linac stability expectations

FEL Photon Source

- Photon beam pointing accuracy and stability
- Photon wavelength, intensity (brilliance)
- Photon bunch arrive time relative to a fiducial (pump probe experiments)

Linear Collider

- Energy precision and stability
- Luminosity
- Integrated luminosity

Particle density Relative pointing accuracy at the IP Relative arrival time at the IP

Small beams (nm) Low emittance (nm-rad)

Very tight tolerances High-resolution diagnostics

Critical LCLS Accelerator Parameters

Critical LCLS accelerator parameters

- Final energy 13.6 GeV (stable to 0.1%)
- Final peak current 3.4 kA (stable to 12%)
- Transverse emittance 1.2 mm-mrad (stable to 5%)
- Final energy spread 1e-4 (stable to 10%)
- Bunch arrival time (stable to 150 fs)

DIPAC'09: Physics requirements for LINAC stabilization...

Argonne

Calculate Jitter Sensitivities for Each Component

Example: sensitivities to RF phase & amplitude

■ ILC energy stability requirement: 0.1% △E/E for 200-500GeV

- RF phase & amplitude stability (vector sum over all cavities)

RF amplitude and phase also talk to *luminosity*

- Emittance growth accelerator (energy spread)
- Transverse jitter from cavities (cavity tilt, RF coupler kicks,...)
- Timing jitter at IP (from bunch compressors):

• Tolerance: 235fs (~70 μm) for $\Delta L/L$ loss of 2%

Bunch compressors

Argonne

RF amplitude or phase jitter becomes:

- Bunch length jitter
- Jitter in arrival time at IP

Sensitivity to a 1 degree error in BC1 Phase (1 klystron)

For bunch to arrive within $70\mu m$ of IP: BC1 phase error must be less than 0.25 deg

N. Walker

Sensitivity to a 1% error in BC1 Amplitude (1 klystron)

For bunch to arrive within $70\mu m$ of IP: BC1 amplitude error must be less than 0.74%

N. Walker

ILC RF phase & amplitude tolerances from RDR

	Phase (degree)		Amplitude (%)		Limitation	
	Correlated	Uncorr.	Corr.	Uncorr		
Bunch compressors	0.24	0.48	0.5	1.6	Timing stability at IP (luminosity)	
Main Linac	0.35	5.6	0.07	1.05	Energy stability	

Tolerances must apportioned over all subsystems in the chain, eg

- RF master oscillator, reference distribution, signal paths, LLRF,...
- (Also implicitly assumes something about disturbance environment)

Correlated or uncorrelated errors...?

- Correlated: eg RF master oscillator, AC power line, environment, ...
- Uncorrelated: eg cavity field probes, measurement noise, ...
- Partially correlated: eg common klystron modulator, relay racks,...

Conservative approach: assume all errors are correlated

LCLS Longitudinal Fast-Jitter Tolerance Budget

tolerances are rms values	$ \langle \Delta E/E_0 \rangle < 0.1\%$ and $ \Delta I/I_0 < 12\%$			
	Parameter	Symbol	LCLS	Unit
laser timing (w.r.t. RF) →	Gun timing jitter	Δt_0	0.50	psec
laser energy →	Initial bunch charge	$\Delta Q/Q_0$	2.0	%
mean phase of 2 klys. \rightarrow	mean L0 rf phase	φ_0	0.10	deg
1 klys. →	mean L1 rf phase	φ_1	0.10	deg
1 X-klys. →	mean Lh rf phase X-band	$arphi_h$	0.50	X- deg
mean phase of 26 klys. \rightarrow	mean L2 rf phase	φ_2	0.07	deg
mean phase of 45 klys. \rightarrow	mean L3 rf phase	φ_3	0.15	deg
mean amp. of <mark>2</mark> klys. →	mean L0 rf voltage	$\Delta V_0/V_0$	0.10	%
1 klys. →	mean L1 rf voltage	$\Delta V_1/V_1$	0.10	%
1 X-klys. →	mean L <i>h</i> rf voltage	$\Delta V_h/V_h$	0.25	%
mean amp. of <mark>26</mark> klys. →	mean L2 rf voltage	$\Delta V_2/V_2$	0.10	%
mean amp. of <mark>45</mark> klys. →	mean L3 rf voltage	$\Delta V_3/V_3$	0.08	%

P.McIntosh

Examples of luminosity loss sources (CLIC)

Source	budget	raw tolerance
Damping ring extraction jitter	1%	
Magnetic field variations	?%	
Bunch compressor jitter	1%	
Quadrupole jitter in main linac	1%	$\Delta \epsilon_y = 0.4 \text{ nm}$ $\sigma_{jitter} \approx 1.5 \text{ nm}$
Structure pos. jitter in main linac	0.1%	$\Delta \epsilon_y = 0.04 \text{ nm}$ $\sigma_{jitter} \approx 200 \text{ nm}$
Structure angle jitter in main linac	0.1%	$\Delta \epsilon_y = 0.04 \text{ nm}$ $\sigma_{jitter} \approx 170 \text{ nradian}$
RF jitter in main linac	1%	
Crab cavity phase jitter	1%	$\sigma_{\phi} \approx 0.01^{\circ}$
Final doublet quadrupole support jit- ter	1%	$\sigma_{jitter} pprox 0.18\mathrm{nm}$
Other quadrupole jitter in BDS	1%	
•••	?%	

D. Schulte

CLIC beam line mockup nano-stabilization demonstration

- Demonstrate 0.1nm vertical stability and 5nm horizontal stability above 4Hz for the final focus doublets
- Demonstrate 1nm vertical stability and 5nm horizontal stability above 1Hz for the main beam quadrupoles

- Should be demonstrated with realistic equipment in an accelerator environment
- Verified by at least two independent systems

Claude Hauviller

Beam experiment at CESRTA

- 1st phase: Demonstration of nm-sensitivity for beam motion observation
- 2nd and 3rd phase: demonstration of quad stabilization on a nm-level
 - Installation of high sensitivity electronics onto an existing BPM at CESR: BBQ electronics. (M.Gasior et al. (CERN); successfully used for tune diagnostics at CERN, FNAL, BNL
- Using CESR with low emittance beams (order of micrometers)
- Optimization of this electronics for very low frequencies:
 10 Hz 100Hz; observation of beam spectra; selection of narrow frequency window with lowest beam eigen-motion
- Controlled low amplitude beam excitation through current modulation of a corrector dipole.
- Trying to obtain a reasonable signal to noise ratio for beam oscillations of nm-size (expected measurement time: 15 minutes)

HS, 15.5.2009

H. Schmickler

Beam stability timescales

Slow

- Ground motion, settling
- Thermal, diurnal

Medium

- Vibration: magnets, cooling
- AC line frequency
- RF phase reference drift
- Acoustic noise

Correlated (common-mode) or uncorrelated

- In time
- Over multiple systems
- Deterministic (correctable) or random
 - Depends on frequency content relative to the pulse- or bunch- rep rate

Fast

- Power supply ripple
- AC line voltage
- Gun laser trigger
- RF phase jitter, timing jitter

Bandwidths are rarely defined when stability is specified

Feedback preamble: two sample spaces

LLRF regulation of SC cavities with heavy beam loading

DIPAC'09: Physics requirements for LINAC stabilization...

Argonne

IP beam-based feedback for LC

- Maximize luminosity by correcting trajectory within bunch train
- Kicker and bpm must be close together for fast correction rate
- Need very high precision single-pass bpms

P. Burrows

EU-XFEL Active element switch-yard

Argoni

Stanford Linear Accelerator Center

Stanford Synchrotron Radiation Laboratory

LCLS longitudinal feedback system schematic

Bunch Length & Energy Feedback Systems

DIPAC'09: Physics requirements for LINAC stabilization...

Argonr

Attosecond synchronization! - outlook & upgrade -

• always based on electron beam manipulation by lasers

Requirements:

- 1. Electron beam is synchronized to laser $< \sigma_t \sim$ 30-60 fs
- 2. Manipulation laser to exp. laser on femtosecond level

Optical clocks for lasers: synchronized to 100as level within macro pulse (1ms) Avoids problems with vibration and diffuse ground motion (< 1kHz, 30ns=100as) Fiber link operates at small unity gain frequency (10Hz) for resynchronization

5/18/2006

Holger Schlarb, DESY

Holger Schlarb

Wrap-up

- Linac stability requirements have never been more stringent
- Future machines are already promising to demand even better stability

We can't control what we can't measure...

Thank you for your attention

