

Intensity and Profile Measurements for Low Intensity Ion Beams in an Electrostatic **C**ryogenic **S**torage **R**ing (CSR)

<u>Outline</u>

- Layout of the Cryogenic Storage Ring CSR
- Beam Diagnostics in Electrostatic Storage Rings
- Beam Intensity Measurement
- Ionisation Profile Monitor IPM
- Project Status + Outlook

The CSR Project at MPI-K

CSR Mechanical Layout

year	ring	Faraday Cup	Scintil. Screen	Scraper	Beam Trafo	Ionisation Profile M.	Position PU	Schottky PU	Neutral Detector
1999	ELISA	X	X	X			X	X	Ο
2002	KEK		X	X			X		Ο
2004	Tokyo MU		X	X			X		0
under constr.	DESIREE	X	0	X			X	X	Ο
under constr.	FLSR	X	X					X	Ο
under constr.	CSR	0	x/o	X	X	X	X	X	Ο

= destructive

= non-destructive

x = inside ring o = outside ring

Beam Intensity Measurement

CSR Parameters

Туре	electrostatic		
Circumference	35.2 m		
Corner deflectors	2x39°, 2x6°		
Acceptance	100 mm mrad		
Mass range	1 – 100 amu		
Energy range (1 ⁺ ions)	20 – 300 keV		
Intensity range	1 nA – 1 μA		
Revolution Frequency	5 - 220 kHz		
Operation temperature	2 - 300 K		
Bakeout temperature	< 320°C		
Vacuum pressure	1×10 ⁻¹³ mbar		
Mat. cold chamber	316 L		
Mat. isolation chamber	AI		

Requirements

- Lifetime measurements
- Determination of reaction rates / cross sections
- Pickup calibration
- Injection efficiency
- ⇒ Non-destructive, absolute current measurement
- ⇒ Beam transformer based on a Cryogenic Current Comparator (CCC) with SQUID sensor

Beam Intensity Measurement

CSR Parameters

-	Туре	electrostatic			
	Circumference	35.2 m			
	Corner deflectors	2x39°, 2x6°			
	Acceptance	100 mm mrad			
	Mass range	1 – 100 amu			
	Energy range (1 ⁺ ions)	20 – 300 keV			
	Intensity range	1 nA – 1 μA			
	Revolution Frequency	5 - 220 kHz			
-	Operation temperature	2 - 300 K			
-	Bakeout temperature	< 320°C			
	Vacuum pressure	1×10 ⁻¹³ mbar			
-	Mat. cold chamber	316 L			
	Mat. isolation chamber	AI			

Boundary conditions in CSR

- Electrostatic elements
- Nonmagnetic materials
- Cryostat, LiHe supply
- Low bandwidth required
- Room temperature operation
- High bakeout temperatures

\rightarrow Prototype for FAIR

Cryogenic Current Comparator (CCC) Principle

CCC (Harvey 1972):

- Uses Meissner-effect and SQUID for I_1/I_2 measurement
- If $I_1 \neq I_2$ magn. field produces compensation current
- Magnetic flux through SQUID \rightarrow voltage change

For charged particle beams:

 $I_{comp} = I_1 - I_2 = I_{beam} - 0$ (position independent)

- SC shielding for non-azimuthal fields
- SC pickup coil with toroidal core ($\mu_r\approx 50000)$
- Low noise, high performance DC SQUID control electronics (FSU Jena)

Optimisation of CCC Performance

Achievements so far: $250 pA/\sqrt{Hz}$, BW = 0...50 kHz at GSI (A. Peters et al. 1999) \Rightarrow TARN II $40 pA/\sqrt{Hz}$, BW = 0...70 kHz at test setup for DESY (W. Vodel et al. 2007)

Thomas Sieber

Optimisation of CCC Performance

Achievements so far: $250 pA/\sqrt{Hz}$, BW = 0...50 kHz at GSI (A. Peters et al. 1999) \rightarrow TARN II $40 pA/\sqrt{Hz}$, BW = 0...70 kHz at test setup for DESY (W. Vodel et al. 2007)

Limitations of the system:

- Mechanical vibrations
- Magnetic shielding
- Noise from toroidal core
- SQUID intrinsic flux noise
- Electronics (amplifier input noise, crosstalk etc.)
- Slew rate / core mat. (BW)

Current detection limit from pickup coil: $2 - \sqrt{1}$

$$I_{s} = \frac{2\pi\sqrt{k_{b}TL}}{\mu_{0}\mu_{r}f(R_{a},R_{i},b)}$$

CCC Installation in CSR

- Shield efficiency from analytical model, coaxial and ring cavities A ~ $(r_i/r_a)^2$
- Diameters fixed by CSR dimensions. Maximum length: 200 mm \rightarrow A \approx 5*10⁻¹⁰
- Toroidal core mech. properties?
- Temperature stability from
 Δp: ΔT < 50 mK

Thomas Sieber

Wednesday, 27.05.09

The Ionisation Profile Monitor

 $R = \sigma n v \eta N, \eta = L_{eff} / C_0$

 $\Rightarrow \text{For I} = 1\mu\text{A}, \text{E} = 300 \text{ keV}$ $p = 10^{-13} \text{ mbar: } \text{R} = 10 \text{ Hz}$ $\Rightarrow \text{Locally higher pressure required}$ $(\sim 10^{-11} \text{ mbar})$

The Ionisation Profile Monitor

 $R = \sigma n v \eta N$, $\eta = L_{eff} / C_0$

 $\Rightarrow \text{For I} = 1\mu\text{A}, \text{E} = 300 \text{ keV}$ $p = 10^{-13} \text{ mbar: } \text{R} = 10 \text{ Hz}$ $\Rightarrow \text{Locally higher pressure required}$ $(\sim 10^{-11} \text{ mbar})$

Local increase of gas density:

- Gas inlet

- Gas curtain

- USR **M. Putignano** TUPB08
- Heating filament
- Laser heating

IPM design criteria for CSR:

- MCP operation at 10 K (MSL, MPI)
- Electrode voltages small (E_{th})
- Kick compensation required (20 keV)
- MCP voltage screening
- Large beam dimensions
- Backup system
- Charge exchange dominant at 20 keV

Local Gas Density Increase

IPM Design Calculations (TOSCA, MAD)

Thomas Sieber

Interceptive Profile Measurement in CSR

Scintillators not sensitive enough for 20 keV, nA beams

 \Rightarrow "Beam Profiler" developed for REX ISOLDE: 10² pps – μ A

PC with framegrabber

<u>Example</u> 10 pA He⁺ 10 keV, Ø 15 mm

Thomas Sieber

MCP Operation at Low Temperatures

Thomas Sieber

DIPAC09, Basel

- <u>Beam transformer</u> will use existing CCC technology + electronics from FSU Jena. Mechanical and cryogenic design for CSR exists (\rightarrow FAIR) Toroidal core from NANOPERM[©]. SC shield performance under investigation
- IPM could be twin version combined with heating of cold chamber.
 20 keV lower limit for reasonable operation (charge exchange, CO dist.).
 - Vacuum measurements performed with the prototype ion trap, More heating tests when experimental runs are over \rightarrow test IPM
- Beam Profiler: MCP / phosphor screen system tested in CSR prototype beamline
- First corner of <u>CSR</u> will be built up in the fall of 2009

Thanks to ...

MPI-K Heidelberg R. Bastert K. Blaum **F.** Fellenberger M. Froese M. Grieser K.U. Kühnel M. Lange F. Laux S. Menk D. Orlov **R.** Repnow A. Shornikov R. von Hahn A. Wolf

- <u>FSU Jena</u> R. Geithner R. Nawroth R. Neubert W. Vodel
- <u>Cockroft Institute,</u> <u>Daresbury</u> J. Harasimovicz M. Putignano C. Welsch
- <u>Univ. of</u> <u>Stockholm</u> A. Källberg S. Rosén

<u>GSI, Darmstadt</u> P. Kowina H. Reeg M. Schwickert M. Witthaus

A. Peters (HIT)

<u>Weizmann Institute,</u> <u>Rehovot</u> O. Heber M. Rappaport J. Toker D. Zajfman

Thank you for your attention !

Electrostatic Storage Rings: Current Projects

DIPAC09, Basel

Figure 3. Total ionisation cross sections for a hydrogen-atom target in collision with fully stripped ions. Theory: -----, B1 (Bates and Griffing 1953); -----, Glauber approximation (McGuire 1982); -----, CDW-EIS (this work); Δ , Δ , CTMC (Olson and Salop 1977); \blacktriangle , CTMC (Banks *et al* 1976). Experiment: \bigcirc , \bigcirc , \bigcirc , Shah and Gilbody (1981a, 1982).

Thomas Sie FIG. 3. The charge transfer cross section per atom of gas traversed as a function of particle velocity and energy. Hydrogen 9, Basel atoms and ions in hydrogen gas.

Wednesday, 27.05.09

Measured performance of the CCC

- System bandwidth: dc...70 kHz
- System sensitivity: 167 nA / Φ_0
- Flux noise (in the white noise region): $8 \times 10^{-5} \Phi_0 / \sqrt{Hz}$
- Corresponding current noise: 13 pA / √Hz

But:

The current resolution of the final system will decrease by about one order of magnitude due to the additional noise contribution of the VITROVAC core of the pickup coil.

W. Vodel, FSU Jena

SQUID Control Electronics

Achievements so far: $250 pA/\sqrt{Hz}$, BW = 0...50 kHz at GSI (A. Peters et al. 1999) \Rightarrow TARN II $40 pA/\sqrt{Hz}$, BW = 0...70 kHz at test setup for DESY (W. Vodel et al. 2007)

CSR Vacuum Concept

- separate vacuum systems for UHV and insulation vacuum, He-lines outside the cold chamber (←cryo leaks)

- differential pumping and baffles in the corners
- bakeout to high temperatures (>300°C, NEG activation) pumping by turbo and ion pumps
- large ratio of pumping surfaces / outgassing surfaces
- bakeable cryo-pumps for most gasses $(H_2 \rightarrow NEG)$
- T<30K H_2 cryo absorption up to two monolayers, reduced outgassing rate
- at T < 2K, $P_D(H_2)$ < 10⁻¹⁶ mbar, cryo condensation of the Hydrogen

sday, 27.05.09

CSR Cryo System

Prototype Temperature Distribution

Max

für Kernphysik

Electrical field E_{ρ} in the deflector on the central orbit

$$E_{\rho} = \frac{2 \cdot E / Q}{\rho} \quad \begin{array}{l} E - Energy \text{ of the ions} \\ Q - Charge \text{ of the ions} \\ \rho - radius \text{ of the central} \\ \text{ orbit in the deflector} \end{array}$$

independent of the ion mass and charge !!! molecules with masses up to

several thousand AMU can be stored Thomas Sieber DIPAC09, Basel

cylindrical deflector

electrode voltage U_e $U_e = \frac{2 \cdot E}{Q} \ln \frac{\rho \pm g/2}{\rho}$ for $\rho >> g U_e \approx \frac{E}{Q} \frac{g}{\rho}$

$$\frac{CSR \text{ design}}{E_{max}} = 300 \cdot Q \text{ keV}$$

and $U_{e,max} < 20 \text{ kV} \text{ g} = 6 \text{ cm}$
 $\Rightarrow \rho = 1 \text{m}$

Lattice parameter standard mode

Gesellschaft

$$\alpha - \text{parameter:} \quad \alpha = \frac{\Delta C / C}{\Delta p / p} \quad \alpha = 0.32373 \quad \text{C-length of the closed orbit}$$

$$\frac{\eta - \text{parameter:}}{\text{Thomas Sieber}} \quad \eta = \frac{\Delta f / f}{\Delta p / p} = \frac{1}{\gamma DiPAC09, Basel} = 0.6734 \quad (\gamma = 1)$$
Wednesday, 27.05.09

ß function and envelopes

MAD calculation

Thomas Sieber

cm

Electrostatic Storage Rings: 1st Generation

ELISA Aarhus

Tokyo Metropolitan University

KEK Tsukuba

$$E_{max}/Q=20 \text{ kV}, C_0 \approx 8 \text{ m}$$