
PAUL SCHERRER INSTITUT

Boris Keil DIPAC 2009

Beam Position Measurement
With Sub-Micron Resolution

Boris Keil
Paul Scherrer Institut



PAUL SCHERRER INSTITUT

Boris Keil DIPAC 2009

Outline
 Introduction
 Requirements & Applications
 Pickup Types & Electronics
 Summary



PAUL SCHERRER INSTITUT

Boris Keil DIPAC 2009

Introduction
 Topic: 

Techniques & aspects of beam position
measurement at 3rd & 4th generation light
sources & colliders

 Focus on: 
 RF BPMs (no X-Ray, laser wire, …)
 Few selected aspects, designs & methods
 Linac-based FELs
 Differences to 3G ring machines

 Many topics equally relevant for light sources
& colliders
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BPM Requirements
Ring Light Sources
 BPM requirements driven by fast orbit feedbacks:

 

want ~σ/10
photon beam stability at end of beamline
 Vertical e-beam size σ~2-5μm
Want few 100nm BPM noise (<1kHz) / drift (seconds …days)

for orbit feedback
Linac FELs
 BPM requirements (also) driven by beam-based alignment

of quadrupole magnets

 

in undulator area
 Single-bunch FELs: typ. ~10-100Hz rep rate
→ Feedback only for random perturbations <1-10Hz
→ Machine should be inherently stable >1-10Hz
 Bunch-train FELs (E-XFEL) & ILC: few 100ns bunch spacing.

Additional BPM requirements by intra-train feedbacks.
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Storage Rings: Fast Orbit Feedback (FOFB)

 Motivation for lowest BPM noise & drift: are modulated back
onto the beam (even amplified when frequency > cut-off) 
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Plots: Courtesy G. Rehm et al. (EPAC’08)
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FOFB Algorithm: Impact on BPM Requirements
„Standard“

 
Algorithm: SVD, PID Control, Uniform Gains

 SVD: rotate BPM & corrector vectors into space where beam
response matrix has only diagonal elements (eigenvalues)

 Drawback: BPM vectors („perturbation patterns“) with
smallest eigenvalues (huge corrector ΔI for tiny orbit Δx)
mainly unreal, caused by BPM noise: vector least useful for 
correction of real perturbations, but main cause of feedback-
induced beam noise

 Usual cure: do not correct such BPM patterns (set small
eigenvalues to 0: “eigenvalue cut-off”) 

 Usual problem: orbit not corrected (exactly) to desired
positions
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FOFB Algorithm & BPM Requirements (Cont’d)
Improvement Idea (M. Heron et al., EPAC’08, THPC118):
 Feedback will modulate much less noise onto orbit if each

BPM pattern („eigenvector“) has its own PID loop, with gain 
weighted by eigenvalue:

 Real perturbations: corrected fast (high loop gain)

 Perturbations mainly pretended by BPM electronics
noise: corrected slowly → noise averaged, much 
less feedback noise on the beam

 Algorithm can reduce BPM noise requirements
 

for new
3G rings & improve beam stability at existing machines

 Needs sufficiently powerful real-time feedback computation
engine (μPs, DSPs, FPGAs, or combination)
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Impact of Machine Design on BPM Requirements
Impact of BPM noise reduced by:
 Minimization of quotient between largest & smallest SVD eigenvalue

(conditioning number) –

 

depends on lattice/optics & BPM/corrector
locations
 Large beta functions @ BPMs
BPM electronics bunch charge & pattern dependence irrelevant by:
 Top-up injection
 Filling pattern feedback
BPM position drift of mechanics & electronics reduced/eliminated

 

by:
 Air temperature stabilization
 Photon BPMs for orbit feedback
→ At a well-designed machine, many BPM system specifications
are not relevant for beam stability → difficult to get funding for
upgrades of older BPM systems ...
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BPMs For Beam-Based Magnet Alignment
Ring Light Sources
 Local bump in quadrupole magnet: Find bump amplitude

where quad strength change

 

causes minimal orbit distortion
 Goal: Calibrate BPM offset, reduce coupling
 Moderate requirements on BPM resolution & drift (>>1μm)

Linac FELs
 Undulator length up to ~200m, segmented: 1 quadrupole & BPM

every few meters
 SASE process: Needs <σ/10 (~3μm @ λ~0.1nm) deviation

from straight e-beam trajectory over >2-3 gain lengths (~10-20m)
for sufficient (~90%) electron-photon overlap
 Raubenheimer 1990: Quadrupole alignment via

dispersion-free steering

 

(e.g.: LCLS, EU-XFEL)
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Quadrupole Alignment Error vs. FEL Power

Courtesy Y. Li et al. (DESY), 2009

EU-XFEL: SASE1 
undulator (λ=0.1nm),
random quadrupole 

offsets in interval [-x,x]
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Dispersion-Free Steering (DFS)
Method
 Beam trajectory is straight (only) if beam-energy-independent
 Measure trajectory for different energies, iterative correction

of quadrupole center (e.g. via 2D mover) 
 Advantage (over ballistic method, …): accounts for all dipole

fields (quad, undulator errors, earth & stray fields, …)
 BPMs must only measure relative beam movement: initial

unknown BPM & magnet offsets ~100μm (!) O.K.

Resulting BPM Requirements
 Resolution for σ~30μm beam size (LCLS, EU-XFEL) 

 typ. ~1μm if ΔE/E ~ some 10%
 typ. ~100nm if ΔE/E ~ few % σ/300, not σ/10: → BPM specs 

driven by magnet alignment 
strategy (or vice versa)

Not necessarily 
single-bunch
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DFS @ LCLS

Courtesy H. Loos et al., 4/3/2009

Measured LCLS beam 
trajectories in undulator 

after DFS-based 
quadrupole alignment
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Transverse Beam Profile
Ring Light Sources
 Synchrotron radiation damping: Gaussian 3D profile, no bunch tilt

Linac FELs
 Machines without higher-harmonic RF: nonlinear (sine) 

accelerating RF fields cause non-Gaussian longitudinal
& transverse profile
 Result:

 

fraction of bunch that is lasing is not at center of charge
→ suboptimal (or no) lasing although BPMs show ideal straight
undulator trajectory
 Is problem for trajectory feedback (not

 

for magnet alignment!)
 Cure: Linearize RF accel. field via higher-harmonic structures
→ ~Gaussian profile → necessary for sub-μm position
measurement of the lasing part of the bunch
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Example: Correlation 
between transverse 

and longitudinal 
charge distribution @ 

FLASH (measured 
by transverse 

deflecting cavity, H. 
Schlarb et al.).

Lasing electrons not 
at transverse center 

of charge. Cure 
(FLASH + E-XFEL): 

3rd harmonic RF

Courtesy B. Faatz et al., SINAP 2008

Transverse Beam Profile (Cont‘d)



PAUL SCHERRER INSTITUT

Boris Keil DIPAC 2009

Outline
 Introduction
 Requirements & Applications
 Pickup Types & Electronics
 Summary



PAUL SCHERRER INSTITUT

Boris Keil DIPAC 2009

Button Matched
Stripline

Resonant 
Stripline, 
Normal 

Coupling

Single 
Cavity 
Normal 

Coupling

Two 
Cavities, 
Hybrid 

Coupling
Signal/Noise – –

 

/

 

+ + + +
Monopole Mode 
Suppression

– – – –

 

/

 

+ +

Single-Bunch Reso-

 
lution (@ low charge)

– –

 

/

 

+ + + ++

Electronics Drift –

 

/

 

+ –

 

/

 

+ –

 

/

 

+ –

 

/

 

+ +
Weight 10mm pipe + + + + + +
Weight 40mm pipe + + –

 

/

 

+ –

 

/

 

+ –

 

/

 

+ –

 

/ +
Design Effort + + –

 

/

 

+ –

 

/ + –

 

/

 

+ –
Fabrication Costs + + –

 

/ + –

 

/ + –

 

/ + –

 

/ +
Tuning Effort + + + + –

 

/ + + +

Common Pickups

Standard for ring 
machines: SNR 

uncritical (averaging 
over many bunches), 
minimal beam impact 

Typical choice for SASE 
undulators, intra-train & 
IP feedbacks: sub-μm 

single-bunch resolutionQualitative/subjective pros & cons ...

pe
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“Standard”

 

BPM types 
for warm linac beam 

lines (where ~ 5 -

 

50μm 
resolution is needed)
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Resonant Stripline Pickup
 Standard pickup for PSI XFEL test
injector: needs ~10μm resolution at
10...200pC (poster: A. Citterio et al.)

 Signal/noise superior to button at
10pC. Potential for sub-μm resolution
at higher bunch charge with suitable
electronics (hybrid, ...)

Four λ/4 
resonators || 

beam

Pickup signal: 500MHz decaying 
sine → simpler electronics than 

cavity BPM, direct sampling (plot: 
5GSample/s VME digitizer, PSI 

design using „DRS“

 

chip: low-cost)

Antenna

Tuner Screen 
monitor block

-1
-0.8
-0.6
-0.4
-0.2

 0
 0.2
 0.4
 0.6
 0.8

 1

 105  110  115  120  125  130  135

S
ig

na
l A

m
pl

itu
de

 [a
.u

.]

Time [ns]

Channel 1
Channel 2

PMC
Slot 1

PMC
Slot 2

150mm



PAUL SCHERRER INSTITUT

Boris Keil DIPAC 2009

Cavity BPM Pickups
Many types & designs (→ overview talk D. Lipka). Examples:
 LCLS: 11.4 GHz. Waveguide to electronics (→ talk Stephen Smith)
 SCSS (H. Maesaka et al.): Weight-

 

and cost-optimized design for
lower frequencies. Cables to electronics. Well suited for larger beam
pipe diameters (SCSS: 4.8GHz, E-XFEL: 3.3GHz).

Reference
(„Monopole“)

Cavity Position
(„Dipole“)

Cavity

Beam

 Reference Cavity: Signal ~ Bunch Charge.

 Position Cavity: Signal ~ Charge * Position

Pictures: Courtesy A. Liapine, D. Lipka
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Cavity BPM Pickups (Cont’d)
 Allow mode-selective coupling (LCLS, SCSS, ...): Position cavity

waveguides / antennas couple to dipole mode, suppress large 
monopole mode signal
 Result: easier monopole suppression in electronics than pickups

with normal couplers → highest resolution (<< 1 μm) & low drift

Reference Cavity
Position Cavity

(Visible: vacuum, couplers)

SCSS type (4.8 GHz).
L = 100 mm overall.

Pictures: Courtesy D. Lipka
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Colliders: Current Transformer BPM

Courtesy L. Søby, DIPAC’07

 Ceramic gap in beam pipe: wall (mirror) current flows over
transformers („segmented wall current monitor“). Current ratio
used for position calculation.

 ILC

 

version: 2.6μm (x) / 5.2μm (y) resolution (3.2nC, 300ns bunch
spacing, 0.3–80MHz BW).

 CLIC

 

version (0.67ns bunch spacing, 760pC) 180nm (x) / 350nm (y)
resolution (not single bunch).

resistive 
coating
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Courtesy M. Ross
APAC 2007

Pickup Supports
 Sub-μm position resolution:

want also low drift of electronics
and mechanics
 Mechanical drift: ~100nm with

suitable support material &
temperature stability („passive
support“)
 ILC IP: want ~2nm resolution 
→ use „active“

 

support

SLAC/LLNL “nm-BPM”: 
15.6nm resolution 

(cavity triplet, 
somewhere hidden in 

the support ...)
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BPM Electronics

Typical (3G Ring, ID 
BPMs)

Typical (Linac, 
SASE-Undulator)

Resolution / BW 200nm < 1 kHz 500nm < 50MHz

Drift (hour/week) For Specified Environment 100nm/1μm 100nm/1μm

Beam Charge Dependence ... 100nm/1%

Bunch Pattern Dependence ... n.a.

Position Range +-5mm +-1mm

Bunch Charge/Current Range 0.1-400mA 0.01-0.5nC

Differential Nonlinearity ... 0.03% FS

Integral Nonlinearity ... 2% FS

Bunch-to-Bunch Crosstalk n.a. 100nm

x-y Coupling 2% 1%

Initial Offset & Gain Error 100μm / 3% 100μm / 3%

 Main challenge is fulfilling all specifications simultaneously,
not just one (e.g. resolution).
 People tend to focus on low resolution (→ talk title), but e.g. low drift
& bunch charge/pattern dependence are often more difficult to reach.



PAUL SCHERRER INSTITUT

Boris Keil DIPAC 2009

BPM Electronics (Cont’d)
 Typical 3G ring button electronics (simplified): direct sampling

ADC
16bit

160Msps

FPGA
Virtex-5

FXT

 Typical 4G linac cavity BPM electronics (simplified): homodyne rec.

500MHz Control
System

Control
System

3-5GHz

RF Front-end Mezzanine
Carrier
board

RF Front-end Mezzanine
Carrier
board

→ Modular system: 3G ring & 4G linac BPM systems can use same
ADC & FPGA boards & crates/housing, with customized RF front-ends

Common housing, fan, power supply

Common housing, fan, power supply

Detailed 
electronics 

designs: talk 
by D. Lipka

LO

ADC
16bit

160Msps

FPGA
Virtex-5

FXT

IQ
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Summary
 Beam position measurement is not just pickup

& electronics technology, but an overall concept
involving machine design & operation.

 The design of magnet lattice & optics, RF & air
conditioning systems, choice of beam-based alignment
techniques & orbit correction algorithms as well as 
the bunch charge and its temporal variation strongly
affect the required BPM performance.

 Kennedy (slightly misquoted): Don’t (just) ask what the
BPM system can do for your machine, but (also) what
your machine can do for the BPM system.
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Thank you
for your attention!
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