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Slice parameter measurements by RFD: principle
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Callbratlon measurements @ SPARC
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- H Field 5

in the case of accelerating
sections, we have TW and SW
cavities. In general RFDs are
multi-cell devices working on the
TM11-like mode.

Both the E and the B field
contribute to the total deflection.

The transverse force is uniform
over a wide region inside the iris
aperture

In TW devices the iris aperture (a)
is the most important parameter to
fix the deflection efficiency and
group velocity
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RF Deflecting structures: Peak E fieljd and\polarization
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Analytical approx.
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RFD DIAGNOSTICS

Since there are two
possible polarities of
the deflecting field,
polarizing rod or
holes are, in general,
foreseen to introduce
an azimuthal
asymmetry in the
structure fixing the
working polarity itself
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RF Deflecting structures: SW case (SPARC RFD)
E, B field profiles

—

protect the RF source

RFD in the LNF
oven

SW structures are multi
cell devices working,
for example, on the n-
mode. Theses
structures have, in
general a higher
efficiency per unit
length with respect to
the TW ones but the
maximum number of
cells is limited to few
tens because of mode
overlapping. They
requires circulators to

from reflections.

Input coupler




SPARC RF Deflector

PARAMETERS
Deflecting mode SW, T. SWITCH
Number of cells 5 # # Q§ H LOAD
Frequency 2.856 GHz
Quiality factor (Qy) 16000
Coupling coefficient () 1
Max. input power (Pge pax) |2 MW RED

Transv. shunt imp. (R;) 2.4 MQ

An example of SW structure is the
Defl. voltage @ Pre_wax (V1) |3 MV SPARC RFD. It is a 5 cells SW

Max. surf. E field (Epea) |90 MVIm | 'strycture working on the m-mode at

2.856 GHz and fed by a central coupler
with coupling coefficient equal to 1.
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RF Deflecting structures: performances
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Because of the higher surface
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RF Deflecting structures: induced energy spread
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RF Deflecting structures: transport matrix of a single cell
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General meas. setup: beam profile and transverse slice emittance

TRIPLET

SCREEN 1 ~0.4m for Q-SCAN

UNDULATOR ~4m

For beam profile and transv.
slice emittance the beam
image is taken on the screen
1. The slice beam emitt. is
measured by the quad.scan.




Transverse slice emittance and beam profile: virtual measurement
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Beam profile measurements: measurement@SPARC (1/2)

—
Electron Bunch from RF injector

Initial velocity By ~ 0.994 (4AMeV)

Phase 0°

VELOCITY BUNCHING MEASUREMENTS
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If the beam injected in a long accelerating structure at the
crossing field phase and it is slightly slower than the phase
velocity of the RF wave, it will slip back to phases where
the field is accelerating, but at the same time it will be
chirped and compressed.

We operated with a
quasi-Gaussian long.
laser profile ~7.5 ps
FWHM long with 300 mm
transverse spot size and
300 pC. The beam
acceleration on crest
corresponds to  the
phases around -75 deg.
In this condition bunch
length is length
measured at the linac
exit was 2.5 ps with an
energy of 150 MeV.
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Compression factor

Beam profile measurements:
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measurement@SPARC (2/2)

The longitudinal beam
profile measurements are
crucial for this experiment
because, while the bunch
Is compressed, it also
change its longitudinal
distribution.
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Transverse slice emittance: measurement@ SPARC

We compare the slice emittance measurement with a beam with 125 pC of charge and a laser
spot on the cathode of 320X300 um with a PARMELA simulation. We used a technique that we
called RUS (Running Slice). It is very hard, especially on the beam tails, to determine the first and
the last slice. This assumption however has impact on the position of all the other slices. To
overcome this problem and resolve the ambiguity we fix a slice length (in our case 200 um) and
move it along the bunch in smaller steps.
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Beam profile: measurement@ LCLS (courtesy P. Emma)
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Transverse slice emittance:measurement@ LCLS (courtesy P. Emma)

Use Transverse RF to Measure Time-sliced Emittance at Low Charge

I 1 ’l (not same data)

-3 -2 -1 0 1 2 3
bunch length coordinate (ps)

20 pC, 135 MeV, 0.6-mm laser spot diam., 400 um rms bunch length (5 A)



Beam profile: measurement@FLASH (courtesy C. Gerth)
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General measurement setup: longitudinal phase space
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UNDULATOR — — LINAC

-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
e
-
-
-

3
il

The longitudinal phase space can be characterized using the

combination of RFD and dipole. In this case the beam is projected

into the screen 2. In order to have enough longitudinal resolution

the vertical dimension at the screen position has to be taken

~ funder control. From the phase space picture the slice energy

L3 spread can be extrapolated by slicing the beam vertically and
) measuring the beam thickness in energy as function of time.



Long phase space: virtual measurement
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Also the horizontal B-function at the
screen has to be reduced as much as
possible in order to reduce the
emittance contribution to the energy
spread measurement. In any case the
dominant systematic error is the
energy spread induced by the RFD



Long phase space: subtraction of the RFD contribution to o,

For each slice The contribution of the deflector to the
o2 + o2 _ 52 slice energy spread can be taken into
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Long phase space: effect of long RFD structures

E E E
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If we consider a long RFD, we can

have effects also on the measured
average energy of each slice
because the bunch head-tail rotate
along the deflector and experience a
non-zero average electric field
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Long phase space: measurement @ SPARC
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Long phase space: measurement @ LCLS (courtesy P. Emma)

Profile Monitor ¥ AGS:IN20:995 10-Dec-2008 20:39:29
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Long phase space: measurement @ LCLS (courtesy P. Emma)

Use Transverse RF to Verify Compression Linearization of X-
Band RF (11.4 GHz)

Offset: 0 to 300 mm

LCLS Blgﬁ/}ﬂma‘zor (247 mm nominal)
measurements — [ ____L____
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\/ = 20 MV .#°  measurements T
p=—160°
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RF deflector OFF RF deflector ON Deflector ON & X-band ON
energy chirp only energy chirp + X-band RF ON
RF deflector ON _ (linearized)




Advanced RFD structures: circular polarized RF deflector

[Haimson et al, AIP, 647, 2002]
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Circular polarized RF deflectors: measurements

[J. Haimson et al, AlP, 737, 2004]

Number of Cavities 2

Operating Frequency ~17 GHz
Nominal Beam Energy 15 MeV

RF Deflection Angle ~27 mradian
Drift Distance 2m

Beam Deflection @ Screen 57 mm

Peak RF Input Power 734 kKW
Normalized Emittance 2.8 mm.mrad
Longitudinal resolution ~100 fs
Bunch length ~5 mm

ofnersy

_electron




Advanced RFD structures: Aluminum RF deflectors

The new RFD of the
CTF3 Combiner
Ring have been built
in aluminium to
reduce the cost and
the delivery.

The cells have been
machined, clamped
together with tie rod to
guarantee the RF
contacts and welded.

1 . ..,.! =] — - The structure has
§1\ |m 4¥, ~ M been installed with

Ve E W .eﬂb'h L3 L . Success WlthOUt
|\r r‘t'l’“l't‘[ " observing MP
: ¥ phenomena.

D. Alesini et al.,, PAC
09.



The next generation RFD for beam diagnostics

Detuning
plungers

90 deg spatial
polarization

90 deg temporal
polarization



CONCLUSIONS

RFDs are fundamental devices for both longitudinal and transverse phase space
characterization allowing reaching resolution below 10 fs.

The measurement setups and the experimental results, in the SPARC case, have
been shown and discussed.

In particular the use of the RFD technique has been fundamental in the velocity
bunching experiment at SPARC.

A possible solution to take into account the contribution of the RFD in the energy
spread slice has been also illustrated.

Important new results have been also reached in other accelerator facilities like
LCLS or FLASH: the use of the RFD technique allowed measuring laser heating
effects or longitudinal phase space correction using X-Band cavities.

New important results have been recently obtained in RFD fabrication with
alluminum

THANK YOU
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