DIPAC 2009, 25th May 2009, Basel

Finite Element Method Simulations - a Powerful Tool for Beam Position Monitor Design

P. Kowina, P. Forck, W. Kaufmann, GSI Darmstadt F. Wolfheimer, T. Weiland, TU Darmstadt

Linear cut (Shoe-box) BPM

- > Detection principle and examples of technical realization
- FEM simulations of BPM features:
 - simulation of cross-talk
 - optimization of position sensitivity
 - frequency dependence of position sensitivity

Capacitive button BPMs

FEM simulations for low β beam:

- signal shape and its frequency spectrum
- position sensitivity
- sensitivity map

Summary

Shoe-box BPM

DIPAC 2009, 25th May 2009, Basel

Frequency range: 1 MHz < f_{rf} < 10 MHz \Rightarrow bunch-length >> BPM length

Advantage (in ideal case):

very linear position reading

$$x = a \cdot \frac{U_{right} - U_{left}}{U_{right} + U_{left}} \equiv a \cdot \frac{\Delta U}{\Sigma U}$$

 frequency independent position sensitivity
 precise position determination even for transversal large beam
 Disadvantage:

> large size
 > complex mechanics

Examples for technical realization

Technical realization for HIT synchrotron

(design based on metal coated Al₂O₃ ceramic plates)

Aperture: 180x70 mm² Design for FAIR SIS 100 BPM (same properties as shoe-box)

DIPAC 2009, 25th May 2009, Basel

FEM Simulations - a Powerful Tool for BPM Design

GSI

Real life \Rightarrow **FEM simulations required**

DIPAC 2009, 25th May 2009, Basel

Available Software: CST-Suite (MAFIA), Comsol, HFFS, MAGIC

Considerations (here):

- Frequency range: 1 MHz < f_{rf} < 10 MHz</p>
- bunch-length >> BPM length
- ⇒ propagation of E-field can be approximated by TEM wave

FEM simulations:

- > volume divided in 3-dim meshes with typically 10⁶ to 10⁷ cells
- > beam is simulated by a traveling wave on a wire
- Time Domain Solver: Gaussian shaped pulse (width corresponding to 200 MHz bandwidth)
- Output: time dependent signal, frequency dependences, S-parameters, field distribution etc.
 Simulation time ~15 h / task

FEM Simulations - a Powerful Tool for BPM Design

wire

Ceramics VS. metal plates (simulations of cross-talk)

DIPAC 2009, 25th May 2009, Basel

Advantage:

 high mechanical stability
 low expansion coefficient=> not sensitive on temp. changes
 even complicated structures possible

Disadvantage:

> high coupling capacitance due to ε=9.6 for Al₂O₃ ⇒ deterioration of position sensitivity

Geometry	Structure on ceramics	Metal plates
no guard ring 1mm gap	-5.1dB	-7.9dB
no guard ring 2mm gap	-8.1dB	-10.8dB

Design based on metal coated ceramics

Ceramics VS. metal plates (simulations of cross talk)

DIPAC 2009, 25th May 2009, Basel

Advantage:

 high mechanical stability
 low expansion coefficient=> not sensitive on temp. changes
 even complicated structures possible

Disadvantage:

> high coupling capacitance due to ϵ =9.6 for Al₂O₃ \Rightarrow deterioration of position sensitivity

Geometry	Structure on ceramics	Metal plates
no guard ring 1mm gap	-5.1dB	-7.9dB
no guard ring 2mm gap	-8.1dB	-10.8dB

Design based on metal coated ceramics

Ceramics VS. metal plates (simulations of cross talk)

DIPAC 2009, 25th May 2009, Basel

Advantage:

 high mechanical stability
 low expansion coefficient=> not sensitive on temp. changes
 even complicated structures possible

Disadvantage:

> high coupling capacitance due to ε=9.6 for Al₂O₃ ⇒ deterioration of position sensitivity

Geometry	Structure on ceramics	Metal plates
no guard ring 1mm gap	-5.1dB	-7.9dB
no guard ring 2mm gap	-8.1dB	-10.8dB
with guard ring	-20.8dB	-22.5dB

Design based on metal coated ceramics

capacitance can be reduced by ~factor of 3 by mean of separating ring

DIPAC 2009, 25th May 2009, Basel

Simulations:

- > Gaussian pulse travels on wire on different positions
- \succ calculation of $\Delta U/\Sigma U$ from induced voltage on matched output ports

Criteria of optimization:

> linearity

is typical for shoe-box BPMs but can be spoiled e.g. by structure discontinuities (max. error ± 1% for BPM in ± 80 mm displacement range)

DIPAC 2009, 25th May 2009, Basel

Simulations:

- Gaussian pulse travels on wire on different positions
- \succ calculation of $\Delta U/\Sigma U$ from induced voltage on matched output ports

Criteria of optimization:

- > *linearity*
- Sensitivity

increased by factor of two (!) by cross-talk reduction: (additional separating ring between adjacent electrodes)

Sx=0.96 %/mm (ideal value *Sx*=1.1 %/mm) at 1 MHz *Sy*=2.6 %/mm (ideal value *Sy*=2.9 %/mm) at 1 MHz

DIPAC 2009, 25th May 2009, Basel

Simulations:

- > Gaussian pulse travels on wire on different positions
- \succ calculation of $\Delta U/\Sigma U$ from induced voltage on matched output ports

Criteria of optimization:

- > *linearity*
- > sensitivity

offset reduction symmetrical and well grounded guard rings δx=-0.4mm (ideal value δ=0) at 1 MHz δy=-0.04mm (ideal value δ=0) at 1 MHz

DIPAC 2009, 25th May 2009, Basel

Simulations:

- > Gaussian pulse travels on wire on different positions
- \succ calculation of $\Delta U/\Sigma U$ from induced voltage on matched output ports

Criteria of optimization:

- > linearity
- > sensitivity
- offset reduction
- x-y plane independence careful treatment of fringe fields

⇒ horizontal displacement not seen in vertical plates)

Frequency dependence of position sensitivity

Piotr Kowina

FEM simulations of button BPMs (FAIR p-Linac)

DIPAC 2009, 25th May 2009, Basel

Ansatz:

- > different β along lattice
- position measurements on nth rf harmonics (rf leakage in inter-tank sections)

Parameters:

- > BPM aperture: Ø 30 mm
- *f_{rf} = 325 MHz*
- > bunch length $\sigma_t = 150 \ ps$

Simulations:

- > CST Particle Studio used
- beam simulated as Gaussian charge distribution with:
 - bunch length $\sigma_t = 150 \ ps$
 - velocity 0.1 < β < 0.3
- > Weak Field Solver used
- ~1.8x10⁶ mesh cells Simulation time ~20 h / task

FEM simulations for low β beam

Parameters:

- > BPM aperture: Ø 30 mm
- > f_{rf} = 325 MHz
- > bunch length $\sigma_t = 150 \ ps$

Results:

 signal shape and its frequency spectrum depends on beam position

Position sensitivity for low β beam

Parameters:

- > BPM aperture: Ø 30 mm
- > f_{rf} = 325 MHz
- > bunch length $\sigma_t = 150 \ ps$

Results:

- signal shape and its frequency spectrum depends on beam position
- position sensitivity depends on frequency (chosen rf harmonics)

Position sensitivity for low β beam

Parameters:

- > BPM aperture: Ø 30 mm
- *f_{rf} = 325 MHz*
- > bunch length $\sigma_t = 150 \ ps$

Results:

- signal shape and its frequency spectrum depends on beam position
- position sensitivity depends on frequency (chosen rf harmonics)
- position sensitivity depends on β
- readouts are non-linear
 (typically for button BPM)

horizontal beam position [mm]

DIPAC 2009, 25th May 2009, Basel

G S]

DIPAC 2009, 25th May 2009, Basel

Parameters:

- > BPM aperture: Ø 30 mm
- > f_{rf} = 325 MHz
- > bunch length $\sigma_t = 150 \ ps$

Results:

- > readouts are non-linear
- > xy-coupling
- sensitivity map depends on
 β and frequency (chosen rf harmonics)

DIPAC 2009, 25th May 2009, Basel

Parameters:

- > BPM aperture: Ø 30 mm
- > f_{rf} = 325 MHz
- > bunch length $\sigma_t = 150 \ ps$

Results:

- > readouts are non-linear
- > xy-coupling
- sensitivity map depends on
 β and frequency (chosen rf harmonics)

DIPAC 2009, 25th May 2009, Basel

Parameters:

- > BPM aperture: Ø 30 mm
- > f_{rf} = 325 MHz
- > bunch length $\sigma_t = 150 \ ps$

Results:

- > readouts are non-linear
- > xy-coupling
- sensitivity map depends on
 β and frequency (chosen rf harmonics)

G S]

DIPAC 2009, 25th May 2009, Basel

Parameters:

- > BPM aperture: Ø 30 mm
- f_{rf} = 325 MHz
- > bunch length $\sigma_t = 150 \ ps$

Results:

- readouts are non-linear
- > xy-coupling
- Sensitivity map depends on β and frequency (chosen rf harmonics) strong dependence for $\beta \leq 0.1$ weak dependence for $\beta \geq 0.3$

Consequences:

- sensitivity maps to be prepared for each location (β) and demand harmonics
- BPMs usable only for limited beam displacement:
 (e.g. for β = 0.1 and 3rd rf harmonics

 $\pm 5 \text{ mm only i.e. } \sim 30 \% \text{ of aperture!}$

FEM simulations are very helpful in BPM design since:

- > check different approaches without prototyping
- > visualize fields propagation in BPM
- > allow to understand and control complex processes in BPM
- > the role of different BPM elements can be checked
- > optimize BPM position sensitivity

Simulations are successfully used in the case of aspects that can not be investigated using "traditional methods" (e.g. low β beams).

DIPAC 2009, 25th May 2009, Basel

Thank you for your attention

DIPAC 2009, 25th May 2009, Basel

Thank you for your attention and patience ;)

DIPAC 2009, 25th May 2009, Basel

651

25

Backup transparencies

ŋn

Reduction of the plate—to—plate cross talk

DIPAC 2009, 25th May 2009, Basel

- Poor plate separation deteriorates position sensitivity
- Plate—to—plate cross talk is caused by large ceramic permittivity ε=9.6 resulting in high coupling capacitance between adjacent plates
- An insertion of the additional ring between adjacent plates reduces cross talks by more than 10dB

FEM Simulations - a Powerful Tool for BPM Design

Measurements of the BPM prototype

DIPAC 2009, 25th May 2009, Basel

(NWA measurement)

BPM for HIT facility in Heidelberg (2005)

GS1

Other example: optimization for FAIR SIS-100

Low – Beta Beams (charge distribution)

DIPAC 2009, 25th May 2009, Basel

Time Evolution

➤ The pulse shape for β=20% with max. offsets of ±10 mm.
 ➤ Single plate signal ⇒ variation of zero crossing below 2 ps ≡0.2° !
 ⇒ TOF measurement with oscilloscope possible
 (but: sample rate of scopes < 10 GS/s)

"Traditional" measurement of button BPM

Measurement with movable wire antenna:

Results:

- > Non-linearity
- horizontal-vertical coupling
 - \Rightarrow Polynomial fit with x and y dependence

DIPAC 2009, 25th May 2009, Basel

Example for technical realization

DIPAC 2009, 25th May 2009, Basel

Technical realization for HIT synchrotron (design based on metal coated Al₂O₃ ceramic plates)

Piotr Kowina