SSRF Beam Diagnostics Commissioning

LENG Yongbin on behalf of SSRF BI group

Outline

Instruction of SSRFOverview of SSRF BI system

≻Subsystem

- Beam position monitor
- Tune monitor
- Current & charge monitor
- Diagnostics beam line
- Transverse feedback
- Status of other components

≻Summary

Shanghai Synchrotron Radiation Facility

SSRF complex

Ring Parameters

	DBA	Low-emittance mode	Normal Mode
Enenrgy	GeV	3.5	3.5
Circonference	m	432	432
Natural Emittance	nm- rad	3.9	11. 2
Current: Multi-bunch (Single)	mA	200~300(5)	200~300(5)
Number of Cells		20/4	20/4
Straights: Length×Number	m	12×4、6.5×16	12×4、6.5×16
$\beta_x/\beta_y/\eta_x$ in middle of 12m straight	m	10.0/6.0/0.15	10.0/6.0/0.0*
$\beta_x/\beta_y/\eta_x$ in middle of 6.5m straight	m	3.6/2.5/0.10	3.6/2.5/0.0*
Betatron Tune Q _x /Q _y		22.22/11.32	22.22/11.32
Chromaticity ξ _x /ξ _y		-56/-19	-56/-19
RF Voltage	MV	4.0~6.0	4.0~6.0
Energy Loss Per Turn (Dipole only)	MeV	1.448	1.448
Max beam power	kW	~600	~600

Beam lines in the first stage

- Macromolecular Crystallography (In-Vac Und.)
- High-Resolution Diffraction
- □ X-ray Absorption Fine Structure Spectroscopy (W)
- □ Hard X-ray Micro-focus and Application (In-Vac Und)
- X-ray Imaging and Biomedical Application (W)
- X-ray Scattering
- □ Soft X-ray Microscopy (Und.)
- X-ray Interference Lithography (SINAP)

Construction schedule

Dec. 2004 ~ Dce. 2006: Building construction

- □Jun. 2005 ~ Jun. 2008: Accelerator equipment and components manufacture and assembly
- Dec. 2005 ~Dec. 2008: Beamline construction and assembly
- □ May. 2007 ~ Jul. 2007: Linac commissioning
- □Oct. 2007 ~ Dec. 2007: Booster commissioning
- □ Dec. 2007 ~ Sept. 2008: Storage ring commissioning
- □Jun. 2008 ~ Mar. 2009: Beamline commissioning
- □ Apr. 2009: The SSRF operation begins

Milestone for BI system

Time	Events
2001 ~ 2004	Preliminary research & design
2004.12.25	Project start
2005.04.12	Internal design review
2005.05.30	International design review (Bob, Guenther, JC, Sun Baogen, Cao Jianshe)
2007.05.15	Linac diagnostics ready in day one for Linac
2007.09.30	Booster diagnostics ready in day one for Booster
2007.12.21	BPM, DCCT, TM, parts of SRM ready in day one for Ring
2008.06.18	Interferometer online
2008.11.01	Streak camera & gated camera online
2008.12.19	Transverse feedback online
2009.03.31	System performance evaluation, targets achieved

Primary requirements

measurements	Ring	Booster	Linac&TL
Beam position	10um @ 694kHz 1um @ 10Hz	100um @ 1.67MHz	100um @ single pass
Tune	0.0001 @ 1Hz	0.001 @ 200Hz	
Current / Charge	10uA @ 1Hz	50uA @ 10kHz	2%
Profile / Size	10um	200um	200um
Bunch length	2ps		
Energy			0.1%
Other components			
Transverse feedback	1		
Slit/Scraper	1	3	
Fast orbit feedback	1		

System design

	LN	LTB	BS	BTS	SR	Purpose	
Stripline BPM	3	3	50	5		Beam position, longitudinal distribution	
Button BPM					152	Beam position, bunch charge, filling pattern	
PCT			1		1	Average current, lifetime	
WCM	5	2	1	3		Bunch charge, longitudinal distribution	
ICT	1	1		1		Bunch charge	
Faraday Cup	1					Bunch charge	
Screen Monitor	5	3	4	4	2	Profile, energy, emmitance for Linac & TL	
Tune Monitor			1		1	Tune measurement	
Slit		2		1		Energy purity	
Scraper					2	Machine study, collimator	
Diagnostics BL					1	Profile, transverse beam size, bunch length	
Transverse FB					1	Beam stability	
Orbit FB					1	Orbit stability	
Total	15	11	57	14	161		

DAQ Hardware & software platform

subsystem	Sensors	Electronics	DAQ/Control
Beam position	Button/stripline	Libera	Linux embedded IOC
Bunch charge	WCM/ICT/FC	Oscilloscope	Windows embedded IOC
Tune	Stripline kicker	Function generator	HTTP access
Trans profile	Phosphor / OTR	CCD	PXI IOC+ image grabber
Beam current	NPCT175	Bergoz	PXI IOC + DMM
Slit / Scrapper	Step motor	Motor driver	PXI IOC + Motion controller
Trans feedback	Stripline kicker	Spring-8 board	PXI IOC + DI/O
Filling pattern	Button	RF front-end	PXI IOC + waveform recorder
Beam size	SRM	Interferometer (CCD)	PXI IOC + image grabber
Beam length	SRM	Streak camera	IPC + image grabber
Timing		EVR	VME (VxWorks) IOC

PXI IOC talks to EPICS through Shared Memory IOCcore, which wins due to

•We had experiences before

- •Easy to learn and use for new players
- •Easy to move from lab test system to field system
- •Easy to modify and debug in the field

DAQ System Architecture

➤ 13 BI stations + 1 SRM lab, total 212 IOCs

Five kinds of IOCs used: VME, Libera, PXI, Scope, Soft

Beam Position Monitor

	Design goals	Achievement
Ring	1um @ 10Hz	< 200nm @ 10Hz
	10um @ 694kHz	< 3um @ 694kHz
Booster	100um @ 1.67MHz	< 50um @ 1.67MHz
Linac & TL	100um @ SP	< 33um @ SP

BPM System Architecture

BPM data & functions

Support by Diamond Light Source package

- ADC raw data @ 117MHz, 2048 points
- First turn data synchronized by injection trigger
- First 2048 samples of TBT data synchronized by injection trigger
- Up to 0.5M samples of TBT data on demand
- 10Hz SA data, orbit measurement
- Embedded position interlock logic
- User defined current scaling factor (beam current measurement)

Instrumentation Technologies delivered

I0kHz FA data @ SFP port

SSRF added some applications

- 24 hours buffer for SA data @ EPICS DB level
- Auto Gain Control logic @ EPICS DB level
- Beam lifetime measurement @ EPICS DB level
- Phase advance measurement @ EPICS DB level

Ring BPM resolution evaluation

COD resolution: typical <200nm, best <80nm, with ideal beam <40nm TBT resolution: typical 3um Uniformity of filling pattern is important for BPM performance

Tune Monitor

	Design goals	Achievement
Ring	0.001 @ 200Hz	0.001 @ 800Hz
Booster	0.0001 @ 1Hz	0.0001 @ 1Hz

Tune monitor configuration

Tune monitor performance: Ring

Typical TBT data during tune measurement

Daily operation panel

Daily operation: FFT of 10k TBT data, uncertainty < E-4

Tune monitor performance: Booster

Vertical

Horizontal ramping tune

Vertical ramping tune

0.5

100

Tune drift during ramping

TBT data 400k samples, cover 240ms FFT windows size 2048, 1/1.23us = 800Hz Tune measurement uncertainty < E-3

Current & Charge measurement

	Design goals	Achievement
Ring DCCT	<i>ng DCCT</i> 10uA @ 1Hz 2uA @	
Booster DCCT	50uA @ 10kHz	30uA @ 10kHz
		10uA @ 2Hz
ICT	2%	1% @ 2Hz

Sensors layout

1 DCCT @ Booster 1 DCCT @ Ring

1 ICT @ Linac 1 ICT @ LTB transfer line 1 ICT @ BTS transfer line

Transfer efficiency could be fully evaluated with this configuration

BPM + combiner @ Ring Bunch charge & filling pattern

Average current measurement: DCCT

DCCT performance evaluation

Resolution < 2uA @ 1Hz Nonlinearity < 0.03% @ 0 ~ 300mA

Nonlinearity < 0.07% @ 0 ~ 20mA

Bunch charge measurement: ICT

1000 samples

RMS: 0.009/1.067nC = 0.8%

P-P: 0.06/1.067 = 5%

Bunch charge measurement: BPM

Acquiris DC252, BW 2GHz Sampling rate 8GHz

PXI BCM test @ 2009.04.14

Bunch ID 304 - 306, lifetime - 14 hours

Bunch ID 311 ~ 314, lifetime ~ 18 hours

Bunch ID 308 ~ 310, lifetime ~ 21 hours

2

2.5

Time (hours)

3

1.5

BCM full range = 1nC, readings STD = 0.9pC

3.5

4

4.5

5

2000 samples

1

0.8

0.2

0

0.5

RMS: 0.9pC/1.0nC = 0.1%

Diagnostics Beam Line

	Design goals	Achievement
Beam size	10um	10um
Beam length	2ps	2ps

Layout

Diagnostics beam line: bench setup

Diagnostics beam line: image system

2008.01.03 80mA, no COD correction copper cavity

2008.10.01 150mA SC cavity, noisy PS

2008.04.10 100mA, COD um level copper cavity

2008.10.27 86mA SC cavity, noisy PS fixed

Diagnostics beam line: Interferometer

Measurement uncertainty um level, system resolution better than 10um

Transverse Feedback

	Design goals	Achievement
Bandwidth	250Mhz	250Mhz
System gain		> 40dB

Transverse feedback

- > Stripline kicker @ injection section, BPM pickups @ #2 straight section
- Spring8 designed digital feedback processor
- In-house made separate stripline kicker
- ➢ in-house made RF front-end
- Betatron oscillation attenuation > 40dB

Transverse feedback performance

SSRF multibunch transverse feedback system test @ 2009.01.20

Status of the other components

- Screen monitor is daily operation toolkits for Linac & TL important in day one commissioning for both booster & ring
- Slit is rarely used now

used few times during booster commissioning

- Scraper is very useful for machine study used as collimator to protect IDs in daily operation
- WCM is rarely used now good tools for operator in commissioning stage
- Fast orbit feedback is under commissioning

Summary (1)

	Measurement	Specification	Achievement
	Beam position	Resolution 100µm@2Hz	< 33um @ SP
LINAC	Beam profile	Resolution 200µm@2Hz	200um @ 2Hz
LTB	Bunch charge	Relative accuracy 2%	1%
BTS	Energy	Relative accuracy 0.1%	0.1%
	Emmitance	Relative accuracy 10%	10%
	Beam position	Resolution 100µm@1.67MHz	< 50um@1.67MHz
	Beam profile	Resolution 200µm@2Hz	200um @ 2Hz
BS	DC current	Resolution 50µA@10kHz	30uA@10kHz
			10uA@2Hz
	Tune	Resolution 0.001@200Hz	0.001@800Hz
	Beam position	Resolution 10µm@694kHz	3um @ 694kHz
		Resolution 1µm@10Hz	200nm @ 10Hz
	Beam profile	Resolution 10µm	10um
SR	Beam length	Resolution 2ps	2ps
	DC current	Resolution 10µA@1Hz	2uA @ 1Hz
	Tune	Resolution 0.0001@1Hz	0.0001@1Hz
	MBTF	BW 250MHz	BW 250MHz, -40dB gain

Summary (2)

- > Beam diagnostics meets all physical requirements
- All necessary diagnostics tools ready in day one for commissioning
- > Adopting new technologies and methods accelerates system development and implementation
- > All design goals achieved except fast orbit feedback
- Fast orbit feedback could be online this year
- > We need keep working on stability & reliability issues

Acknowledgments

The development of SSRF beam diagnostics is a successful story of international collaboration. Without comments, suggestions from accelerator community we could not make it. In particularly many thanks to

- Guenther Rehm and Michael Abbott from Diamond Light Source
- ➢ Bob Hettel, Jim Sebek, James Safranek, Jeff Corbett from SLAC
- Tadayoshi Misuhashi from KEK
- Takeshi Nakamura from Sring8
- Jean-Claude Denard from Soleil Light Source
- *Hsu Kuo-Tung* from Taiwai Light Source
- ➤ Cao Jian-She and Ma Li from IHEP
- Sun Bao-Geng from NSRL

We hope we can do more contribution to this community in the future.

