

## Beam Diagnostic System of XFEL/SPring-8

H. Maesaka<sup>\*</sup>, S. Inoue, T. Ohshima, S. Matsubara,
A. Higashiya, M. Yabashi, T. Shintake and Y. Otake RIKEN/SPring-8,
H. Ego, K. Yanagida and H. Tomizawa, JASRI/SPring-8
DIPAC 2009
25<sup>th</sup>, May 2009

## Outline

#### Introduction

- X-ray FEL Project at SPring-8
- SCSS Test Accelerator
- XFEL Machine Layout and Parameters
- Beam Diagnostic System
  - Requirements and Solutions
  - RF Cavity BPM
  - Transverse Beam Profile Monitor
  - Current Transformer
  - Temporal Bunch Structure Measurement
- Summary

## Introduction

## X-ray FEL Project at SPring-8



- X-ray wavelength: < 0.1 nm
- Self-amplified spontaneous emission (SASE) process
- Beam energy: 8 GeV
- Key technologies
  - Low-emittance thermionic electron gun: 0.6  $\pi$  mm mrad
  - High-gradient C-band accelerator: 35 MV/m
  - Short-period in-vacuum undulator:  $\lambda_u$  = 18 mm, K < 2.2
- First FEL light will be delivered in 2011.







#### **SCSS Test Accelerator**

- Extreme ultraviolet (EUV) FEL facility
  - Wavelength: 50 60 nm for saturated output
  - Beam energy: 250 MeV
- Saturated EUV laser light has been stably generated since 2006.





## • Construction was completed in March 2009.









## **XFEL Machine Layout**



- 8GeV linear accelerator
  - 238 MHz, 476 MHz, L-band (1428 MHz), S-band (2856 MHz) and C-band (5712 MHz)
- Bunch compression
  - Velocity bunching in the low energy region
  - Three bunch compressors
  - Bunch length:  $1 \text{ ns} \rightarrow 30 \text{ fs}$  (FWHM)
  - Peak current:  $1 \land \rightarrow 3 \land A$
- Coherent X-rays are generated by in-vacuum undulators

#### **XFEL Machine Parameters**

| Beam Energy                | 8 GeV                     |
|----------------------------|---------------------------|
| Bunch Charge               | 0.3 nC                    |
| Normalized Slice Emittance | <b>0.7</b> $\pi$ mm mrad  |
| Repetition Rate            | 60 pps maximum            |
| Peak Current               | 3 kA                      |
| Bunch Length               | 30 fs (FWHM)              |
| Beam Radius                | <mark>40 μm</mark> (RMS)  |
| Undulator Period           | 18 mm                     |
| Undulator K-value          | 2.2 maximum               |
| Undulator Gap              | <mark>3 mm</mark> minimum |
| Number of Periods          | 275 x 18 = 4950           |

# Requirements and Solutions for the Beam Diagnostic System

- High-resolution beam position monitor (BPM)
  - To maintain the overlap between an electron beam and X-rays in the undulator section with 4  $\mu m$  precision
  - Position resolution < 0.5  $\mu$ m
  - $\rightarrow$  RF cavity BPM
- High-resolution transverse beam profile monitor
  - Beam radius: 40 μm (RMS)
  - For emittance and Twiss parameter measurement etc.
  - Spatial resolution < 10  $\mu$ m
  - $\rightarrow$  OTR monitor and fluorescent screen monitor with a custom imaging system
- Noise-free high-speed current transformer (CT)
  - Need to reduce noise coming from the power supply of a klystron.
  - Rise time < 1 ns</p>
  - $\rightarrow$  Differential CT
- Temporal bunch structure measurement system
  - Bunch Length: 30 fs (FWHM)
  - Temporal resolution < 10 fs</li>
  - → C-band transverse RF deflecting cavity

#### **RF Cavity BPM**

## **RF Cavity BPM**



- Details will be reported by MOPD07 in the today's poster session.
- Resonant Frequency: 4760 MHz
- Required position resolution:  $< 0.5 \ \mu m$

## **RF-BPM Resolution**

- Position resolution:  $0.2 \ \mu m$ 
  - Measured with three adjacent BPMs.
  - Compare the 2<sup>nd</sup> BPM data with the interpolation from 1<sup>st</sup> and 3<sup>rd</sup> BPMs.



#### **Beam Profile Monitor**

## Precise Beam Profile Monitor

- Requirements
  - Spatial resolution: < 10  $\mu$ m
    - Beam radius is 40  $\mu m$  (RMS) in the undulator section.
  - → Custom imaging system
- Screen type
  - Fluorescent screen for low energy part (< 100 MeV)</li>
    - Ce: YAG etc.
  - Optical transition radiation (OTR) for high energy part
    - Stainless steel foil

K. Yanagida *et al.*, "Development of Screen Monitor with a Spatial Resolution of Ten Micrometers for XFEL/SPring-8", Proceedings of LINAC'08.

## **Imaging System**



- Custom-made lens system
- Variable magnification: x1 x4
  - Lens and CCD camera are mounted on a motorized stage
  - x1 optics: Beam finding
  - x4 optics: Precise measurement

## **Spatial Resolution**

- Spatial resolution of the imaging system was measured by using a grid distortion pattern.
- Spatial resolution: 2.5 μm (HWHM)
  - x4 optics
  - Consistent with lens simulation



## **OTR Target**



- Thin stainless steel foil
  - Thickness: 0.1 mm
  - To reduce radiation damage of other components.
- 1mm-thick frame to support the foil
  - Ten 0.1 mm thick foils are stacked and unified by a diffusion bonding technique.
- Surface roughness: several 10 nm
- Flatness: 3 μm

## **Beam Images**



- Taken at the SCSS test accelerator
  - Beam energy: 250 MeV
  - Horizontally focused by Q-magnet.
- Image width is consistent with the natural divergence due to beam emittance
- Deterioration of Ce:YAG image is small (< 10 μm).

#### **Current Transformer**

## **Differential Current Transformer**







- 2 positive ports and 2 negative ports
- Common-mode noise can be subtracted

#### **CT** Results



- Rise time: 0.2 ns
- Pulse height is proportional to the beam charge

## **Common-mode Noise Reduction**



• Common-mode noise was reduced to 1/10.

#### Transverse RF Deflector

## **Temporal Structure Measurement**



- Temporal beam structure is converted to spatial distribution by transverse RF voltage.
- Beam image is taken by an OTR monitor.
- Required temporal resolution: < 10 fs
  - 100 fs/mm on the screen (after 5–10m drift space)
  - Deflecting voltage: 40 MV at crest phase
- Installed downstream of 3<sup>rd</sup> Bunch compressor

## **C-band RAIDEN Cavity**

- <u>R</u>acetrack-shaped <u>I</u>ris-coupling <u>DE</u>flectio<u>N</u> structure
  - To separate x- and y-mode

H. Ego *et al.*, "Design of the Transverse C-band Deflecting Structure for Measurement of Bunch Length in X-FEL", Proceedings of EPAC'08.

- Resonant Frequency: 5712 MHz
  - To obtain higher kick voltage
  - To fully utilize the C-band accelerator resource
- Backward traveling wave of HEM11-5 $\pi$ /6 mode
- Deflecting voltage: 40 MV
  - When 1.7m x 2 cavities are driven by 50 MW klystron.





#### Low-level RF Measurements

- Measured with a 7-cell model.
  - Pass band
    - Y-mode is clearly separated from x-mode.
- Shunt impedance
  - Bead perturbation measurement
  - Simulation:
  - Measurement:

13.9 MΩ/m 13.7 MΩ/m





## Summary

- RF cavity BPM
  - Position resolution:  $0.2 \ \mu m$
- Beam Profile Monitor
  - Spatial resolution of the imaging system: 2.5  $\mu m$
  - Variable magnification: x1 x4
  - Thin OTR target and Ce:YAG fluorescent screen
- Current transformer
  - Differential output
  - Rise time: 0.2 ns
- Transverse RF deflector
  - For Temporal Bunch Structure Measurement
  - C-band RAIDEN cavity (racetrack-shape iris)
  - Will be installed downstream of the third bunch compressor.
- Beam monitors are ready for XFEL
  - Design work has been almost completed.
  - Performance was confirmed to be sufficient by beam tests.

## Supplements

## Quantity of Beam Monitors



- RF cavity BPM (RF-BPM): 56
- Beam profile monitor (PRM): 43
- Current transformer (CT): 30
- Transverse RF deflector:

## **Detection Principle of RF-BPM**

• TM110 dipole resonant mode of a pillbox cavity

$$E_z = E_0 J_1\left(\frac{\chi_{11}r}{a}\right)\cos\phi \ e^{j\omega t}$$

E-field is linear around the axis

Output voltage



• Need to discriminate in-phase component from quadrature.

## **BPM Electronics**



- IQ demodulator
- Attenuator switch extends the dynamic range to 100 dB

– From sub- $\mu$ m to a few mm

 Baseband signals are recorded by a 12-bit VME waveform digitizer.

## **Position Sensitivity**

- Measurement
  - Motorized stage of the BPM was moved
  - Beam was fixed
- Position sensitivity:  $0.1 \ \mu m$ 
  - More than 20 ADC counts /  $\mu m$
  - ADC noise < 2 counts (RMS)</p>



## **Beam Arrival Timing Resolution**

- Beam arrival timing can be measured by the phase of the reference cavity (TM010).
  - Useful to monitor the timing drift of the machine
  - Required temporal resolution: < 50 fs</p>
- Arrival timing resolution: 25 fs
  - Measured by the reference cavities of two neighboring BPMs.



h4n

#### **Screen Actuator**



- 3-state pneumatic actuator
  - 2 screens and a beam hole
  - For the beam energy of 30 300 MeV
    - Because of the poor OTR yield

## **Projection of Beam Image**



## Parameters of RAIDEN Cavity

| Total Deflecting Voltage                          | $V_y$             | 40    | MV     |
|---------------------------------------------------|-------------------|-------|--------|
| RF deflecting phase                               | $\varphi_a$       | 0     | degree |
| Fractional bunch length for X-<br>ray oscillation | σ <sub>z</sub>    | 200   | fs     |
| Beam energy at the deflector                      | $p_z  c$          | 1.45  | GeV    |
| Resonant frequency                                | $f_a$             | 5712  | MHz    |
| Type of structure                                 |                   | CZ    |        |
| Resonant mode                                     |                   | HEM11 |        |
| Phase shift per cell                              | βD                | 5π/6  | rad    |
| Group velocity                                    | v <sub>g</sub> /c | -2.16 | %      |
| Filling time                                      | $T_{f}$           | 0.27  | μs     |
| Unloaded Q                                        | Qa                | 11500 |        |
| Transverse shunt impedance                        | $Z_y$             | 13.9  | MΩ/m   |

## Machining of the Cell

- Race-track iris
  - Made by a precise milling machine
  - Electrochemically polished
  - Surface roughness:  $1 \mu m$  pk-pk
- Other part
  - Machined by a precise lathe with a diamond bit



– Roughness < 1 μm pk-pk</p>