

Performance of and First Experiences with the LHC Beam Diagnostics

DIPAC 2009

25th - 27th May Mercure Hotel Europe, Basel, Switzerland

Rhodri Jones (CERN)

on behalf of the CERN Beam Instrumentation Group & all our collaborators

- Injection tests of up to 4 adjacent sectors
- Almost all hardware systems involved in tests
- Essential for:
 - Beam instrumentation
 - BPM / BLM
 - Screens
 - Control system
 - Optics
 - magnetic model and aperture

- Injection tests of up to 4 adjacent sectors
- Almost all hardware systems involved in tests
- Essential for:
 - Beam instrumentation
 - BPM / BLM
 - Screens
 - Control system
 - Optics
 - magnetic model and aperture

8th - 10th of August

- Injection tests of up to 4 adjacent sectors
- Almost all hardware systems involved in tests
- Essential for:
 - Beam instrumentation
 - BPM / BLM
 - Screens
 - Control system
 - Optics
 - magnetic model and aperture

22nd - 24th of August

- Injection tests of up to 4 adjacent sectors
- Almost all hardware systems involved in tests
- Essential for:
 - Beam instrumentation
 - BPM / BLM
 - Screens
 - Control system
 - Optics
 - magnetic model and aperture

5th - 7th of September

September 10th - Control (Show) Room

- Threading the beam round the LHC ring
 - One beam at a time, one hour per beam.
 - Collimators were used to intercept the beam (1 bunch, 2×10⁹ protons)
 - Beam through 1 sector (1/8 ring)
 - correct trajectory, open collimator and move on.

Beam 2 threading

- Threading the beam round the LHC ring
 - One beam at a time, one hour per beam.
 - Collimators were used to intercept the beam (1 bunch, 2×109 protons)
 - Beam through 1 sector (1/8 ring)
 - correct trajectory, open collimator and move on.

Beam 2 threading

BPM availability ~ 99%

- Threading the beam round the LHC ring
 - One beam at a time, one hour per beam.
 - Collimators were used to intercept the beam (1 bunch, 2×10⁹ protons)
 - Beam through 1 sector (1/8 ring)
 - correct trajectory, open collimator and move on.

Beam 2 threading

- Threading the beam round the LHC ring
 - One beam at a time, one hour per beam.
 - Collimators were used to intercept the beam (1 bunch, 2×109 protons)
 - Beam through 1 sector (1/8 ring)
 - correct trajectory, open collimator and move on.

Beam 2 threading

LHC Beam Position System Layout

LHC BPM System Performance I

- On line analysis of BPM Data
 - Powerful on-line tools developed by the CERN Operations crew
 - Polarity errors easily identified with 45° BPM sampling
 - Quick indication of phase advance errors

- Some statistics to date
 - 4 polarity errors
 - 2 H to V inversions & 7 BPM mapping errors (LSS8L)
 - 1 B1 to B2 inversion
 - Some 10 remaining suspect BPMs (noisy or incoherent data)
 - Total of ~24 out of 2156 channels (~1%)

LHC BPM System Performance II

- Check of BPM Threshold Levels
 - Threshold determined to be 1.5×10⁹ protons
 - Compared to pre-declared limit of 2.0×10⁹
 - Initial values did not correspond to lab measurements
 - Threshold was 6dB lower in the laboratory
 - Accurate re-measurement of electronics & cables for final bandwidth & signal loss
 - Final model now agrees with beam measurements
 - · Understanding important for intensity card

LHC BPM System Performance III

- Orbit & BPM Stability
 - Short term stability (15 minutes) better than 10μm
 - Alternating high/low peaks follow the beta function indicating that:
 - large fraction of noise results from beam (orbit corrector power supplies \Rightarrow 5-10 μ m orbit rms)
 - resolution & stability of BPM system in orbit mode with single pilot bunch is ~5μm
 - BUT Surface electronics sensitive to temperature variations (~50μm per degree)
 - Point 4 electronics in BI control room so much more sensitive to variations
 - Point 2 electronics in standard outbuilding where source of fluctuation is unclear
 - Several solutions being looked into to solve this problem

LHC Beam TV (BTV) System

- Beam Profile Measurements in the LHC
 - For injection, dump & matching
 - 1mm Alumina (scintillator screen)
 - 12μm Titanium Foil (OTR screen)

Dump line BTV tanks awaiting final installation

LHC BTV System

- All screens fully commissioned
 - 18 BTV in the LHC transfer lines
 - 13 BTV in the LHC ring
 - 6 BTV in the LHC dump lines
- Both video link and digitised data acquired on first shot

First full turn as seen by the BTV 10/9/2008

Uncaptured beam sweeps through he dump line

- Still to do
 - Gradual replacement of the 13 LHC ring CCD cameras with rad hard cameras
 - Turn by turn acquisition for matching measurements using fast cameras

Beam Loss Detectors

- Design criteria: Signal speed and reliability
- Dynamic range (> 10⁹) limited by leakage current through insulator ceramics (lower) and saturation due to space charge (upper)

Secondary Emission Monitor (SEM):

- Length 10 cm
- P < 10-7 bar
- ~ 30000 times smaller gain

lonization chamber:

- N₂ gas filling at 100 mbar over-pressure
- Length 50 cm
- Sensitive volume 1.5 l
- Ion collection time 85 μ s

Both monitors:

- Parallel electrodes (Al or Ti) separated by 0.5 cm
- Low pass filter at the HV input
- Voltage 1.5 kV

BLM Detection Range

- Pilot bunch of 5×10⁹ close to damage level at 7TeV
- Loss of 3×10⁻⁷ of nominal beam over 10ms can create a quench at 7TeV

Installed BLM Monitors

LHC BLM System I

- Worked well from first injection tests
 - Noise level 2 orders of magnitude less than bunch of 2×10⁹
 - Sufficient to allow quenchless injection of 5×10¹¹
 - Data concentration and logging a big issue
 - on-demand capture & continuous monitoring tested

LHC BLM System II

- 2 beam induced triggers of quench protection system during injection tests
 - Loss of between $2 4 \times 10^9$ protons with very different loss patterns

700m

450m

LHC BLM System II

- 2 beam induced triggers of quench protection system during injection tests
 - Loss of between 2 4×10^9 protons with very different loss patterns

700m

- Quench reconstruction
 - Quench in middle of dipole ideal for analysis
 - Beam current, impact location & loss distribution width used to constrain simulations
 - Result factor 2 lower compared to value obtained by calculating enthalpy of the coil
 - ~15 mJ/cm³ estimated compared to 30 mJ/cm³ expected

The Base Band Q Measurement (BBQ) System

LHC Q, Q' & C Systems I

- BBQ Tune Measurement Systems Commissioned for Beam 2
 - Observed nice signals for injection oscillations
 - · Allowed tune to be adjusted early-on to improve initial lifetime
 - Visible in residual non-excited circulating beam spectra with S/N ratio > 10dB

Initially

- No RF capture
- Q_H ≈ 0.50
- Q_V ≈ 0.24
- Trim of ΔQ_H by -0.2
 - $Q_H \approx 0.50 \rightarrow 0.32$
 - Moving from the halfinteger resonance increases circulation time to 300+ turns (still no RF capture)

Before correction

After correction

LHC Q, Q' & C Systems II

- BBQ Tune On-Demand system commissioned
 - Chirp excitation using transverse damper
 - Polarities verified to be correct (excitation & acquisition)
 - Allowed first measurement of coupling
 - Measured coupling |C-| ≈ 0.07

LHC BCT Systems

- BCTDC (DCCT)
 - Main Beam 2 acquisition system commissioned
 - Noise signal rms of 7×10⁸ for 1 second integration (1.3μA)
 - Offset of ~2×10⁸ (4.5μA) will be automatically corrected for in the future
 - SAFE BEAM flag & DIP transmission to experiments tested but not yet activated
 - Beam 1 system still to be commissioned with beam

Beam 2 DCCT sees first circulating beam

- BCTFR (Fast BCT)
 - Beam 1 & Beam 2 high sensitivity channels have seen beam
 - Calibration looks OK
 - Still to do
 - Full timing in of system for bunch to bunch measurements
 - Full commissioning of dump line systems
 - Commissioning of the beam presence flags
 - Adaptive lifetime algorithm
 - dl/dt link to machine protection

LHC Wire Scanner System

- Beam 2 System Commissioned
 - Linear wire scanner: 30μm carbon wire scanned at up to 2m/s
 - Low intensity single bunch gives expected noisy signals
 - Calibration verified & looks to be OK

Vertical In / Out Scan on Beam 2

Horizontal Scan on Beam 2

- Still to do
 - Commissioning of Beam 1 system
 - Accurate timing in of acquisition systems
 - Bunch by bunch acquisition

60 hours of Beam Commissioning

60 hours of Beam Commissioning

60 hours of Beam Commissioning

Summary

- A Good Start for all Beam Instrumentation Systems
 - Thanks to years of planning, testing & HW commissioning within the BI Group, with the help of many other Groups & external collaborators
- Next Steps Still a lot to do!
 - Main Shutdown Work
 - BPM & BLM consolidation with considerable dismounting & remounting
 - Improvements to the synchrotron light monitor optical layout
 - Installation of US-LARP luminosity monitors (fast ionisation chambers)
 - Commissioning in 2009
 - Full commissioning of the already tested systems
 - Systematic measurements & fine timing
 - Fast Timing System already used for many systems and has worked very well
 - Commissioning of
 - Synchrotron light monitors (requires undulator)
 - Abort gap monitors (requires undulator)
 - Rest Gas Ionisation Monitors needed for ions (requires gas injection)
 - PLL Tune measurement & Chromaticity with RF modulation
 - Orbit, tune, coupling and chromaticity feedback systems
 - Schottky & finally the luminosity monitors!

September 19th Incident

Slides courtesy of Jorg Wenninger (CERN)

Event sequence on September 19th

- Last commissioning step of the main dipole circuit in sector 34
 - Ramp to 9.3kA (5.5 TeV)
- At 8.7kA an electrical fault developed in dipole bus bar located in interconnection between quadrupole Q24.R3 & neighbouring dipole
 - Later correlated to local resistance of ~220 n Ω nominal value 0.35 n Ω
- An electrical arc developed which punctured the helium enclosure
- Secondary arcs developed along the magnet chain
- Around 400 MJ from a total of 600 MJ stored in the circuit were dissipated in the cold-mass and in electrical arcs
- Large amounts of Helium were released into the insulating vacuum
 - In total 6 tons of Helium was released

Interconnection

Incident Location

Collateral Damage

- Main damage area ~ 700 metres
 - 39 out of 154 dipoles
 - 14 out of 47 quadrupoles
- 16 repaired on surface
- 37 replaced

Calorimetric Data

- Logged cryogenic data revealed temperature anomaly of ~40 mK
 - Found in cell of incident during a previous (lower current) powering cycle
- Data from other powering tests indicated presence of anomaly in sector 12
 - Calorimetric analysis suggested a ~100 nΩ resistance
- 2 magnets removed from tunnel & confirmed to have poor internal splices

ΔT (mk) 7 kA test on Sector 3-4, Sept 15th

9.3 kA test on Sector 1-2, Sept 1st

Suspicious cell in S12

Repair & Consolidation

- Vacuum chamber cleaning in situ
 - Majority of magnets remain in place
 - Cleaning of soot with special cleaning head
 - Removal of MLI debris by venting and pumping
- Major upgrade of the quench protection system
 - Protection of all main quadrupole and dipole joints
 - Protection against symmetric quenches of beam apertures
 - High statistics measurement accuracy to < 1 nΩ.
 - Provides high precision online resistance monitoring of all joints!
- Reinforcement of quadrupole supports
- Improvement of pressure relief system
 - Will eventually be able to cope with 2× 3-4 incident

Planning for 2009

...followed by a long LHC run until November 2010, with short break around Christmas/new year 2009/2010.

Target beam energy for physics : <u>5 TeV</u>.