Instrumentation Requirements for Different Accelerator Types

Bernhard Holzer, CERN

Instrumentation Requirements for Different Accelerator Types

Bernhard Holzer, CERN

high energy proton machines

LHC, Tevatron, HERA, RHIC

synchrotron light sources

ESRF, PETRA 3, SLS ...

therapy machines

HIT, Proscan ...

sase FEL's

ILC / CLIC

... cyclotrons, betatrons, proton linacs el. static machines, heavy ion storage rings ...

I. (s.c.) High Energy Proton Machines

LHC parameters

7 TeV proton energy particles per bunch 1.2*10 11 number of bunches 2808 0.582 Abeam current 362 MJ stored beam energy $\approx 8 cm$ bunch length beam size (arc)

1.2mm ... 0.3 mm

SPS & LHC at CERN

beam parameters ... the standards

orbit

tune, chromaticity, coupling

the non standards: keep these values constant during ramp "snapback"

Tune and Resonances

$$m*Q_x+n*Q_y+I*Q_s = integer$$

HERA p Tune diagram up to 7th order

Beam Emittance

	E _k [GeV]	ε* [π μm]	σ [mm]
LINAC	0.0001 - 0.05	~1.0	
BOOSTER	0.05 - 1.4	2.5	0.3 - 6.5
PS	1.4 - 26	3.0	0.3 - 15
SPS	26 - 450	3.5	0.1 - 6
LHC	450 - 7000	3.7	0.1 - 2

tight emittance budget for beam transfer & accleration

measure: position & angle at injection optics mismatch between transfer lines and storage ring

SPS to LHC transfer line TI 8 – beta functions

emittance dilution due to offset at injection

... (OTR) screens, wire scanners, residual gas monitors etc

minor detail: beam energy = 360 MJ

OTR & scintilltion screens at ELETTRA (Trieste) DIPAC 2007

beam dump tests of a 450 GeV SPS beam on a target

possible solutions: don't touch

synchrotron light monitors for proton beams

Gero Kube, CAS lectures 2008

residual gas monitors

Machine safety: Detection of Beam Losses

beam losses in HERA -p seen by a single BLM failure of standard magnet (dipole /quadrupole)

A. Gomez: Error analysis in LHC, Phase space deformation in case of failure of RQ4.LR7

Short Summary of the studies:

quench in sc. arc dipoles: $\tau_{loss} = 20 - 30 \text{ ms}$

BLM system reacts in time, QPS is not fast enough

quench in sc. arc quadrupoles: τ_{loss} =200 ms

BLM & QPS react in time

failure of nc. quadrupoles: τ_{det}

 $\tau_{damage} = 6.4 \text{ ms}$

→ FMCM installed

failure of nc. dipole:

 $\tau_{damage} = 2 \ ms$

Analysis of fast beam losses (A. Gómez)

worst case: nc. dipole magnets: RD1.LR1/LR5
simulaion of beam losses due to failure of RD1
damage level reached after 25 turns

 $\tau_{BLM \ react.} \approx \tau_{damage}$

FMCM installed (M. Werner et al)
... but redundancy does not really exist

... does it make sense to contemplate about a fast AC beam current monitor in LHC???
(M. Werner et al)

experience is excellent: combination of fast FMCM and AC-BM installed at HERA in 2003/2004

Fig. 1 Statistic of 5 ms events in HERA between 1994 and 2006. Details see text

Dump-Gap Monitoring: AC/DC Monitors

pattern of the LHC bunch train at the dump absorber screen

HERA Bunch Pattern:

 $C_0 = 6335m$

nb = 180

bunch distance = 96 ns

LHC parameters:

 $C_0 = 26660 \ m$

nb = 2808

bunch distance = 25 ns!!!

LHC abort gap: $3\mu s \approx 900m$ Quench limit for gap population at 7 TeV: $2*10^6$ p/m or $5*10^{-6}$ of overall current or $3.2 \mu A$ DC

II. Hadron Therapy Machines

the standards: beam energy, intensity, tunes, orbits not really a problem

Example: parameters of the HIT project in Heidelberg:

control of penetration depth / Bragg peak via beam energy

particles: p, C, He, O

beam energy 50 - 430 MeV/u

beam size 4-10 mm extraction time 1-10 s

extraction intensity 10^6 - $4*10^{10}$ ions / spill

beam power 360 W dc power

The challenge: Stability

Example: PSI proscan project

- 37 multistrip ionisation chambers
- 5 faraday cups
- 6 thin current monitors
- 4 bpms
- 22 halo monitors
- 7 extr. loss monitors

gantry: 3 dipoles 8 quads ... all in all 570 t

so sorry: Example how not to do it the old & rusty HERA-p BPM system

The Challenge: Slow Extraction

3 order resonance extraction dedicated & well controlled excitation of the beam be conservativ, ... & ... stable aim: constant spill intensity

transverse beam profile

$$\frac{10^{10} \, \mathbf{p}}{10 \, \mathbf{s}} = \frac{10^9 \, *1.6 \, *10^{-19} \, \mathbf{Cb}}{\mathbf{s}} = 1.6 \, *10^{-10} \, \mathbf{A}$$

spill intensity diagnostics: 1% accuracy non destructive measurement of fraction of nA in single pass!!! keyword: secondary emission monitors

The challenge: Slow Extraction

3 order resonance extraction dedicated & well controlled excitation of the beam be conservativ, ... & ... stable aim: constant spill intensity

transverse beam profile

$$\frac{10^{10} \, \mathbf{p}}{10 \, \mathbf{s}} = \frac{10^9 \, *1.6 \, *10^{-19} \, \mathbf{Cb}}{\mathbf{s}} = 1.6 \, *10^{-10} \, \mathbf{A}$$

spill intensity diagnostics: 1% accuracy non destructive measurement of fraction of nA in single pass !!! keyword: secondary emission monitors

III. Light Sources

The Standards: beam energy, intensity, tunes etc ... not really a problem

BUT measurement & control of beam size & beam orbits is a real challenge

photon flux
$$F = \frac{number\ of\ photons}{s*0.1\%BW*A}$$

brilliance
$$B = \frac{F}{4\pi^2 \varepsilon_x \varepsilon_y}$$

emittanz≈1 nm rad (PETRA 3)

$$\varepsilon_y \approx 1\% \ \varepsilon_x$$

	ϵ_x [nmrad]	E [GeV]	ϵ_x/E^2		ϵ_x [nmrad]	E [GeV]	ϵ_x/E^2
USR	0.3	7	0.006	SLS	4.4	2.4	0.763
PETRA III	1	6	0.027	ELETTRA	7	2.4	1.215
SPring-8	3.4	8	0.053	BESSY II	6	1.9	1.66
APS	3	7	0.061	Spear III	18	3	2
ESRF	3.9	6	0.108	MAX II	9	1.5	4
Diamond	2.5	3	0.2	ANKA	41	2.5	6.56
Soleil	3	2.5	0.48	DORIS III	450	4.5	22.2

Parameters of some synchrotron light sources

HERA/LEP Emittance: 20 ... 30 nm

Light Sources

requirements for orbit stability: golden rule $\approx 10\% \sigma$

 \rightarrow orbit measurement resolution: $\leq 1 \mu m$

PETRA 3: 220 button BPMs installed, BPM resolution ≈ 0.3 µm required

	β_{x}	β_y	σ_{Tx}	σ_{Ty}	$\sigma_{Tx'}$	$\sigma_{Ty'}$	ID-length
	[m]	[m]	$[\mu m]$	$[\mu m]$	[μ rad]	[μ rad]	[m]
low-β 5 m	1.3	3	36	6.0	28	3.7	5
high- β 5 m	20	2.4	141	5.5	7.7	3.8	5
$low-\beta 2\times 2 m$	1.4	3	37	5.7	27	5.4	2
high- $\beta 2 \times 2 \mathrm{m}$	16.2	2.6	127	5.3	9.3	5.5	2
20 m-ID	16	5	126	7.9	8.2	2.7	10
DW-drift	16	16	127	13	8.5	3.3	5
ESRF low- β	0.5	2.73	59	8.3	90	3	5
ESRF high- β	35.2	2.52	402	7.9	10.7	3.2	5
SPring-8	22.6	5.6	277	6.4	13	5	4.5
APS	15.9	5.3	217	12.6	15.3	5.7	4

typical beam sizes

orbit stability required for stable light fan
due to offset in 6poles / quads → spurious vert. dispersion,
coupling → spoils vert. beam emittance

By the way: diagnostic and control of temperature coefficient of thermal expansion in steel: 12 *10-6

$$\Delta l = 10cm * 12 * 10^{-6} * 1^{\circ}$$

$$\Delta l = 1.2 \mu m \text{ for } \Delta T = 1 \text{ degree}$$

$$d = 1.2 \mu m \text{ for } \Delta T = 1 \text{ degree}$$

$$d = 1.2 \mu m \text{ for } \Delta T = 1 \text{ degree}$$

The ideal Diagnostics Tool: ... Sy-Li

1.5 GeV, $\rho = 3.3m$

Result from synchrotron light monitor

Synchrotron radiation facility APS accumulator ring and blue wavelength:

... and its principle limitation: Werner Heisenberg

diffraction limit ... mainly in vertical plane

$$\Delta \sigma = \lambda/2\Delta \Psi$$

Example: 1 GeV electron beam

 λ =500 nm = green-blue

 $\Delta \psi = 1/\gamma$, opening angle of light cone

relativistic factor: $\gamma = E/E_{\theta}$, E=1 GeV

completely diffraction limited measurement

$$\Delta \sigma = \frac{\lambda}{2\Delta w} = \frac{500 nm}{2*0.5 mrad} = 500 \mu m$$

pinhole cameras interferometric techniques

X (mm)

III. Sase-FEL's

Standards: there are no standards

nota bene: HERA / LEP

 $\varepsilon_0 = 20 \dots 30 \text{ nm}$

schematic view of the europ. x-FEL

Sase-FEL's: diagnostic requirements

non-destructive single event (i.e. single pass) diagnostics needed no periodicity, no averaging over several turns, not even over several bunches. intra-bunch-train feedback (IBTF) \rightarrow sub μ s diagnostics beam size (undulator) $\sigma \approx 30~\mu$ m RMS position stability $\approx 10\%$ of the beam size σ in the undulators single bunch orbit resolution $\approx 1~\mu$ m over undulator length (250 m) machine safety: average beam power 600kW in Strahl

Transv. IBFB Specifications	FLASH	XFEL
bunch-by-bunch stability - at location of IBFB - along undulators	< σ/10 5 - 15 μm < 5 μm	< σ/10 3 - 10 μm < 3 μm
max. beam position offset - at location of the pick-ups	< 10 · σ < 1.5 mm	< 10 · σ < 1 mm
bunch-by-bunch resolution	≤ 2 µm	≤ 1 µm
system latency	< 1000 ns	< 200 ns

Keywords: Resonant Stripline BPMs

BPM's as reentrant cavity design

FEL Diagnostics @ FLASH

4 Loss

courtesy: D. Nölle (DESY)

Sase-FEL's: diagnostic requirements

special problem: slice emittance
development of micro bunches

norm. emittance $\varepsilon_0 = 1.4$ mm mrad $\rightarrow \varepsilon_0 = 4*10^{-11}$

Keyword: Transverse Deflecting RF-Structure "LOLA"

FLASH: slice emittance under SASE conditions @ 13.7 nm

court. H. Schlarb

International Linear Collider court. G. Kube, CAS 2008

key parameters (nominal values)

train repetition rate / Hz	5
bunches per train	2625
bunch spacing / nsec	369.2
train length / μsec	~ 970
particles per bunch / x 10 ¹⁰	2
normalized emittance at IP γε _{x,y} / mm mrad	10 / 0.04
r.m.s. beam size at IP σ _{x,y} / nm	639 / 5.7
r.m.s. bunch length σ_z / μm	300
power per beam at IP / MW	10.5
Luminosity £ 10 ³⁴ / cm ² / sec	2

ILC Reference Design Report (2007)

Challenges: beam position measurement beam stability beam size

non-invasive

ILC: Diagnostics con

court. G. Kube, CAS 2008

- beam position measurements with sub-µm resolution
 - Cavity BPMs for higher resolution applications
 - location in cold and warm sections
 - variety of R&D activities for ILC BPMs at different laboratories
 - single bunch position resolution of ~20 nm achieved at ATF (KEK)

courtesy: T.Nakamura (Tokio University)

high resolution cavity BPM for ILC final focusing system

• non-invasive beam profile monitors

- laser wire scanner
- scanning a finely focussed laser beam across bunches
- · measure Compton scattered photons in downstream detector
- photon rate as function of relative laser beam position
 - → beam profile
- optical diffraction radiation (ODR)
- diffraction of particle Coulomb field at a slit

principle of laser wire scanner

ILC Reference Design Report (2007)

142812

<5um

- Producing and measuring small beam emittance
- Producing and measuring short Bunches
- Conserving small beam emittance (very strict tolerances/requirements on the **beam position monitor precision and resolution**)

BC₁

e- DR

365m

Damping ring

 $\gamma \varepsilon_{\rm x}$: 10 -> 0.381 mm.mrad $\gamma \varepsilon_{\rm v}$: 10 -> 0.004 mm.mrad

 $\Delta E/E : 0.134\%$ $\sigma_7 : 1.5mm (5ps)$

e⁻ injector 2.4 GeV

/	- \
	e+ DR
	IC DI
	\365m
	300111

Wakefield monitor

9 GeV

Accuracy	Resolution	How many
0.1%		48
5µm	50nm	4176
10%	2%	48
0.10%		48
	0.1degree	•
	2%	2
	0.1% 5μm 10%	0.1% 5μm 50nm 10% 2% 0.10% 0.1degree

5um