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Abstract

This contribution focuses on extensive simulations based
on Finite Element Methods (FEM) which were success-
fully applied for the design of several Beam Position Mon-
itor (BPM) types. These simulations allow not only to
reduce the time required for BPM prototyping but open
up new possibilities for the determination of characteris-
tic BPM features like signal strength, position sensitivity
etc. Since a precise visualization of the signal propagation
along the BPM structure is possible, effects like field in-
homogeneities or cross-talks between adjacent electrodes
can be controlled. Moreover, modern simulation programs
enable to define a charge distribution moving at non rela-
tivistic velocities, which has an impact on the electromag-
netic field propagation. It is shown that for slow ion beams
the frequency spectrum of the BPM signal depends on the
beam position. Simulation methods are discussed in the
context of different BPM realizations applied in hadron ac-
celerators. All simulations described in this paper were per-
formed using CST Suite R© [1].

LINEAR-CUT BPM

Proton and ion synchrotrons are usually operated at the
bunching frequency frf in the order of few MHz. In these
accelerators bunches typically have a length of a several
meters. For such beam parameters linear-cut BPMs are
preferred due to its excellent linearity of the position de-
termination and the independence of the measurements in
the orthogonal directions [3]. Moreover, the full transver-
sal coverage by the electrodes allows precise position mea-
surements even for the beams with transversal large and
complex charge distribution. An example of such a BPM,
sometimes called “shoe-box” due to its cuboid shape, is
shown in Fig. 1. Also other geometrical realizations,

Figure 1: An example of the linear-cut BPM [2].

having e.g. elliptic cross section, show the same electro-
magnetic properties, see [4] and references therein.

The most important BPM parameter is its position sen-
sitivity, defined as an response of the BPM on the beam
displacement [3].

Assuming the bunches much longer than the BPM itself,
the electric field propagation in the BPM can be well ap-
proximated with TEM wave traveling on a wire. The even-
tual influence of effects caused by non-relativistic beams is
minor and can be neglected. Based on this assumption the
BPM position sensitivity can be experimentally determined
using so called stretched wire method, see e.g. [5]. In this
method the amplitude changes of the signals induced in the
electrodes are measured as a response on the changing wire
position.

Similarly, position sensitivity can be obtained by means
of FEM-based simulations that allow optimization of the
BPM design entering in the time consuming prototyping
phase. Since simulations enable three dimensional field vi-
sualization, the field inhomogeneities or distortions effect-
ing BPM linearity caused by e.g. structure discontinuities
can be found and eliminated.

The optimizations performed for linear-cut BPMs with
rectangular as well as elliptic cross sections and different
electrode arrangements are described in Refs. [2, 4, 6]. It
was investigated how the presence of different BPM com-
ponents like e.g. guard ring influence the position sensitiv-
ity and linearity of the position determination. In order to
investigate the influence of the whole environment on the
position readout, the complete BPM was modeled together
with the surrounding vacuum chamber [7]. All components
were defined with realistic material permittivity and con-
ductivity. The volume was divided in 3-dimensional hexa-
hedral meshes with typically 106 to 107 cells – depending
on the model complexity. The number of meshes is mainly
blown-up by small curved parts or elements oriented diag-
onally with respect to the main coordinates. The beam was
simulated as a traveling wave on a wire using the CST Time
Domain Solver and thus reproducing the stretched wire
method. An excitation was defined as a Gaussian shaped
pulse with length of 5 μs corresponding to the bandwidth
of 200 MHz. The position sensitivity was calculated from
S-parameters expressed in frequency domain as described
in [2]. The goals in optimization of the BPM design were:
i) enlarged position sensitivity, ii) linearity of the position
determination, ii) reduction of the offset between electrical
and geometrical center of the BPM and iv) independence
of measurements with respect to the orthogonal directions.

Here we concentrate on the aspect of cross-talk between
adjacent BPM electrodes that decreases the difference of
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Figure 2: The charge distribution of the bunch moving with β = 0.1 for 8 mm displaced beam (left). Corresponding
signals induced in BPM electrodes (middle) and their frequency spectra (right), for further parameters see text.

signal amplitudes and, in consequence, diminishes BPM
position sensitivity. The cross-talk can be measured as re-
sponse through BPM using network analyzer connected
to both electrodes. The result are frequency dependent
S21 parameters. Similar cross-talk determination was per-
formed by means of FEM simulations for the geometry
shown in Fig. 1 and two different realizations: based on
metal coated ceramic or using metal plates. The results are
summarized in Table 1.

Table 1: Cross-talk for Geometry from Fig. 1 and Realiza-
tions Based on Ceramics and Metal Plates

ceramics metal plates

no guard ring, -8.1 dB -10.8 dB
2 mm gap

with guard ring -20.8 dB -22.5 dB

The advantage of the ceramics based solution is its high
mechanical stability and relatively easy positioning even
of the very complex geometries that consist many ele-
ments [4]. The ceramic plates are coated from the inner
side with thin metal sheet (typical thickness 50 μm). The
shape of electrodes, guard rings etc. is formed by cut-
ting out the fragments of metallization. However, a dis-
advantage of such solution is the significantly larger (com-
pared to metal plates) coupling capacitance between adja-
cent electrodes caused by a large relative permittivity of ce-
ramics εr = 9.6. The better separation could be achieved
by increasing the spacing between electrodes. However,
for the investigated geometry this distance can not be ex-
tended much beyond 2 mm without significant distortion
of the electric field in the gap neighborhood. The inser-
tion of the separating ring in the gap between adjacent elec-
trodes, see Fig. 1 improves electrodes separation by more
than 10 dB,see Table 1 resulting in an increase of the po-
sition sensitivity by factor of two. The maximal reduc-
tion of cross-talk would be possible for a geometry based
on metal plates equipped with separating ring but is hard
due to complicated mechanical alignment of many sepa-
rate BPM parts. In addition, simulations showed that such
a small change in the geometry makes the position sensi-
tivity less frequency dependent [2]. Similar results were
obtained for the BPM with elliptic cross section [6].

LOW β EFFECTS FOR BUTTON BPM

In contrast to the assumptions in the previous section for
bunch length comparable to the BPM length an influence of
the effects due to non relativistic beams on the signal regis-
tered in the electrodes becomes more significant. An exam-
ple for such an accelerator is FAIR proton linac presently
under design at GSI [8, 9]. Its accelerating cavities will be
driven with a frequency of 325 MHz. In this accelerator
BPMs will be installed in several locations over 30 meters
of the p-Linac. The beam energy varies along the p-Linac
from 3 MeV to 70 MeV corresponding to a beam velocity
0.1 ≤ β ≤ 0.37. A button type BPM geometry was chosen
due to its compact mechanical realization and short inser-
tion length to fit into the short inter-tank sections of the CH-
cavities [8]. An additional problem that has to be faced is
the rf–power leakage from accelerating cavities, that is es-
pecially disturbing in the inter–tank sections, where some
BPMs are supposed to be installed. This may require anal-
ysis of the beam position on higher rf harmonics.

The position sensitivity of the BPM for non relativistic
beams was theoretically investigated by R. Shafer in [10].
The author showed that the BPM sensitivity depends on its
geometry, beam energy end frequency on which beam posi-
tion is analyzed. However, this 2-dimensional formula can
not be directly applied to the 3-dimensional BPM geome-
try, especially for button type BPMs.

The numerical simulations for low β beams were per-
formed by means of CST PARTICLE STUDIO R© [1] us-
ing the wake-field solver. As a source of excitation a pencil
like beam was defined with a Gaussian-shaped longitudinal
charge distribution that moves with 0.1 ≤ β ≤ 0.3. The
length of bunches was σ = 150 ps at a bunch frequency
of 325 MHz. The simulated BPM model consists of four
planar buttons of Ø 14.4 mm mounted within a beam pipe
of Ø 30 mm. The position of the simulated beam was var-
ied in 2 mm steps within the transverse plane in a range of
±10 mm. The positions in vertical and horizontal direction
were calculated from amplitudes of the signals induced in
the opposite BPM electrodes using the ’delta over sum’-
method (see Ref. [2]).

For non relativistic beams the electromagnetic field
propagation is faster than the beam itself. Since the elec-
tric field distribution has a significant longitudinal com-
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ponent [10] the distribution of the induced charge in the
BPM electrodes depends on the relative distance between
beam end electrode as shown in Fig. 2 (left): For the closer
electrode the longitudinal charge expansion is more nar-
row than for more distant electrode. It means that signals
registered in the closer electrode will have not only higher
amplitude but also will be much shorter than that measured
on the opposite BPM side, see Fig. 2 (middle). In this fig-
ure the signals registered in the electrodes obtained in the
simulations for single bunch moving with the velocity of
β = 0.1 are presented. Note that the amplitudes of the
both signals Fig. 2 (middle) were normalized to unity for
better visualization. The results of Fourier Transformation
on these signals are shown in Fig. 2 (right). In the fre-
quency spectrum of the signal registered in the distant elec-
trode high frequency components are strongly suppressed.
In consequence, the position calculated form both signals
depends strongly on evaluation frequency. The response
of the BPM was compared for the first three harmonics
of the accelerating frequency, i.e. at 325 MHz, 650 MHz
and 975 MHz and for β = 0.1 and β = 0.3 are shown
in Fig. 3. For β = 0.1 the position sensitivity, given by
the slope of the displayed curves, is significantly higher
for the higher frequencies, what is in line with theoreti-
cal predictions of Shafer [10] and simulations presented in
Ref. [11]. However, it is worth to be emphasize, that the
sensitivity at the higher frequencies is larger only close to
the BPM center but drops rapidly already for few millime-
ter beam displacement. For higher beam velocities i.e. for
β ≥ 0.3 the electric charge distribution squeezes [10] ap-
proaching more TEM wave. Thus the difference between
longitudinal expansion of the signals registered in the op-
posite electrodes become negligible. Therefore, the posi-
tion sensitivities for β = 0.3 is almost constant regardless
the frequency at which they are analyzed. The effects de-
scribed above are even stronger in the two dimensional po-
sition map. In Fig. 4 each node of grid corresponds to sim-
ulated beam position. The reconstructed beam positions
show nonlinearities of the position readings. The strength
of these distortions grows with the beam displacement typ-
ically for button type BPMs [3]. However, for the beam
with β = 0.1, the position maps for first three rf harmon-
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Figure 3: Reconstructed horizontal beam position calcu-
lated using ‘delta-over-sum’ algorithm from signal regis-
tered in horizontal buttons for zero vertical beam displace-
ment.
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Figure 4: BPM response on variation of transverse beam
position for β = 0.1 (left) and β = 0.3 (right).

ics significantly diverge from each other. These differences
vanish for β ≥ 0.3, Fig. 4 (right). This has to be taken into
account when installing BPMs in different locations along
the p-Linac: for each location a separate table with correc-
tion parameters specific for the given harmonic number and
beam velocity have to be prepared. Moreover, BPMs are
only usable for limited beam displacement. For this par-
ticular case for β = 0, 1 and 3rd harmonics BPM is com-
pletely insensitive for the beam displacement larger than
±5 mm i.e. exceeding ∼30 % of BPM aperture. Therefore,
it should be kept in mind, that the choice of the rf harmon-
ics is always trade between reduction of the influence of rf–
leakage on the BPM signals and reduction of usable BPM
aperture.

SUMMARY

The simulations based on finite element methods are
very helpful to test different BPM approaches without
time consuming prototyping. An 3-dimensional visualiza-
tion of the field propagation allows to understand complex
processes which simplifies optimization of BPM design.
Moreover, simulations are successfully used for cases that
could not be investigated using a test bench, i.e. for the non
relativistic beams.
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