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Abstract

Multiplexing Beam Position Monitors are widely used
for their simplicity and inherent drift cancellation property.
These systems successively feed the signals of (typically
four) RF pickups through one single detector channel. The
beam position is calculated from the demultiplexed base
band signal. However, as shown below, transverse beam
motion results in positional aliasing errors due to the finite
multiplexing frequency. Fast vertical motion, for example,
can alias into an apparent, slow horizontal position change.

INTRODUCTION

Fig. 1 shows a typical arrangement of four BPM pickup
electrodes or “buttons” in the cross section of a vacuum
chamber. A bunched beam of charged particles travels inz-
direction, inducing RF signals to the pickups. A multiplex-
ing BPM processing system (fig. 2) sequentially samples
the buttonsA..D using a single receiver channel. Since
only amplitude ratios are needed to determine the beam po-
sition, this approach features good drift rejection.
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Figure 1: BPM Geometry and linear model equations

LINEAR MODEL

To the first order, the amplitudes of the pickup signals
induced by a particle beam at position(x, y) can be ap-
proximated by eqns. 1 wherex andy are assumed to be
properly scaled according to the beam pipe geometry, and
deviations from symmetry are neglected.k is a constant
offset andI0 denotes the beam current.

Note that ã..d̃ actually refer to RF signal amplitudes.
However, for the purpose of this analysis, we neglect the
fact that a practical system (fig. 2) multiplexes RF signals
into a single receiver/detector. We simply assume the pres-
ence of four identical detectors upstream of the multiplexer
such that the entire analysis can be performed in base-band.
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Figure 2: Multiplexing BPM system block diagram. All
signals are in baseband, normalized to the beam current.

The beam position can be determined from the normal-
ized button signalsa..d = ã/I0..d̃/I0:

Ĩ0 = (+ã + b̃ + c̃ + d̃ )/4
x̂ = (−a + b + c− d )/4
ŷ = (+a + b− c− d )/4

We use a “̂ ” accent to distinguish the system response
from the “true” beam position.

DYNAMIC SYSTEM BEHAVIOR

Let’s now investigate the dynamic behavior of the mul-
tiplexed BPM system running at a multiplexing clock fre-
quency offs, i.e. each button gets measured at a rate of
fs/4. Beam motion can be described by a time dependent
vector in thex, y plane.

~r(t) = {x(t), y(t)}

For further analysis, we assume the motion to be band-
limited to±fs/2.

Multiplexer Analysis

The time-multiplexed signals(t) consists of a stream of
“excerpts” of the individual pickup signalsa(t)..d(t). We
introduce the abbreviated notion:

s2(t) = {a, b, c, d} =


a(t) 0 ≤ t < Ts

b(t) Ts ≤ t < 2Ts

c(t) 2Ts ≤ t < 3Ts

d(t) 3Ts ≤ t < 4Ts

Besides sampling the pickups in a “(counter) clockwise”
(a, b, c, d) fashion, there exists the possibility of scanning
them in the “butterfly” sequences1 (t) = {a, c, b, d}. (Due
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to symmetry, all other possible schemes are equivalent with
either of the two basic ones.)

Introducing our linear model (eqns. 1)1, we obtain

s2(t) =

 −x +x +x −x
+y +y −y −y
+k , +k , +k , +k


= x(t) {−1,+1,+1,−1}

+ y(t) {+1,+1,−1,−1}
+ k {+1,+1,+1,+1}

(2)

By rearranging the piecewise continuous functions2(t) we
could decompose it into three terms, each a product of a
continuous, position/time dependent function with a sim-
ple discontinuous “rectangular wave” function. In the same
way,s1(t) can be stated:

s1(t) = x(t) {−1,+1,+1,−1}
+ y(t) {+1,−1,+1,−1}
+ k {+1,+1,+1,+1}

(3)

The multiplexer can be seen as amodulator: x andy are
modulated onto two (“rectangular wave”) quadrature carri-
ers atfs/4 (“clockwise” multiplexing). The constant off-
set (“k”) term remains at base-band. The “butterfly” mul-
tiplexer modulatesx andy onto two carriers atfs/4 and
fs/2, respectively. Introducing the “carrier sequences”

c0(t) = {+1,+1,+1,+1} “base band”
ci
1(t) = {−1,+1,+1,−1} fs/4; “I phase”

cq
1(t) = {+1,+1,−1,−1} fs/4; “Q phase”

c2(t) = {+1,−1,+1,−1} fs/2 (4)

we rewrite eqns. 2 and 3:

s2(n) = x(t) ci
1(t) + y(t) cq

1(t) + k (5)

s1(n) = x(t) ci
1(t) + y(t) c2(t) + k (6)

The “carriers” defined by eqns. 4 have the properties

ci(t) ∗ ci(t) = c0(t) ci
1(t) ∗ cq

1(t) = −c2(t)
c0(t) ∗ ci(t) = ci(t) ci

1(t) ∗ c2(t) = −cq
1(t)

cq
1(t) ∗ c2(t) = −ci

1(t)
(7)

Frequency Domain To facilitate analysis in frequency
domain, we already account for the downstream sam-
ple and hold processing and calculate thez-transform of
s2(nTs) sampled at integer multiples of the multiplexer
clock period:

s2(nTs) = x(nTs) (sin(n π
2 )− cos(n π

2 ))
+ y(nTs) (sin(n π

2 ) + cos(n π
2 ))

+ k (8)

For the sequencesci
1(nTs) andcq

1(nTs), adequate represen-
tations involving trigonometric functions were chosen:

ci
1(nTs) = sin(n π

2 )− cos(n π
2 ) = −

√
j
2 jn +

√
−j
2 j−n

cq
1(nTs) = sin(n π

2 ) + cos(n π
2 ) = −

√
−j
2 jn +

√
j
2 j−n

c2(nTs) = cos(nπ) = (−1)n (9)
1The respective sums are written vertically into four columns corre-

sponding to the four “time slots”

Using the correspondences [1]

f(nTs) ⇀↽ F (z)
f(nTs) qn ⇀↽ F (z/q) (10)

the z-transform of eq. 8 becomes (we use lower case sym-
bols for time domain and upper case symbols forz or fre-
quency domain dependent variables)

S2(z) = −
√

j
2 X(z e−j π

2 ) +
√
−j
2 X(z ej π

2 )
−
√
−j
2 Y (z e−j π

2 ) +
√

j
2 Y (z ej π

2 ) + k
1−z−1

In frequency domain, the spectraX(f) andY (f) (which,
according to our assumption are band limited to±fs/2,)
appear shifted by an amount of±fs/4 since

z e∓j π
2
∣∣
f

= ej 2π
Ts

f e∓j π
2 = ej 2π

Ts
(f∓ fs

4 ) = z|f∓ fs
4

Again, the “mixing” behavior of the multiplexer be-
comes apparent: The time multiplexed signals(t) can be
seen as afrequency multiplexedrepresentation of the posi-
tion information{x, y} whereX(f) andY (f) occupy dif-
ferent “slots” in frequency domain. In case of the “clock-
wise” sampling scheme,X and Y are in fact centered
around the same frequency,±fs/4, but the complex spec-
tra are in quadrature. TheY contribution to the “butter-
fly” signal S1(f) appears shifted byfs/2 as can easily be
seen by performing thez-transform with the representation
c2(nTs) = cos(n π) according to eq. 9.

Fig. 3 sketches theX and Y spectral contributions to
the multiplexed signal for “clockwise” (left) and “butter-
fly” (right) sampling. In the former case,X and Y ap-
pear both centered around± fs

4 but with different symme-
try properties with respect to the origin2; in the latter case,
Y is shifted by± fs

2 and its spectral density is doubled due
to overlapping. The singular contribution of the constant
termk is not shown.
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Figure 3: Multiplexed signal spectra (limited to the first
Nyquist zone); “clockwise” (left) and “butterfly” (right)
schemes.

Demultiplexer

The demux subsystem of fig. 2 shall be transformed into
an equivalent structure which is easier to understand. Fig. 4
shows the demultiplexer and the difference network for the
x channel. We begin with moving the negative coefficients

2In reality, the spectra are of coursecomplexand the schematical
“even”/“odd” symmetries merely should symbolize the fact that the carrier
phase affects the shifted spectra’s phase response such that the “compos-
ite” spectrumS still can be decomposed intoX andY contributions.
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Figure 4: Transformation of the demultiplexer into an equivalent structure

upstream of the S/H circuits. This eliminates the need for
“remembering” if a given S/H output has to be fed into a
− or + input because the sign has already been accounted
for. The “old” samples can then simply passed along a de-
lay line which is fed by a single S/H running at the full
multiplexer frequencyfs. Finally, – as we already know,
– the multiplexer tapping off the weighted input signal can
be replaced by a modulator.

Hence, the demultiplexer in combination with the differ-
ence network works as ademodulatortranslating the de-
sired component of the composite signals(t) back to base-
band. The demodulator output signals (for the moment, we
neglect the averaging effect due to the delay line which is
discussed below) of a “clockwise” and “butterfly” BPM are
(multiplying eqns. 5 and 6 by the appropriate “carrier” and
using eq. 7)

x̂2 = ci
1

(
x ci

1 + y cq
1 + k

)
= x− y c2 + k ci

1

ŷ2 = cq
1

(
x ci

1 + y cq
1 + k

)
= y − x c2 + k cq

1

x̂1 = ci
1

(
x ci

1 + y c2 + k
)

= x− y cq
1 + k ci

1

ŷ1 = c2

(
x ci

1 + y c2 + k
)

= y − x cq
1 + k c2

(11)

The fact that the difference network actually accumulates
a “history” of four samples also becomes obvious in the
transformed structure. The averaged delay line shows the
typical fourth order CIC behavior (1−z−4

1−z−1 ) [2].

DISCUSSION

Eqns. 11 can be transformed toz-domain yielding e.g.
for the first line (including the delay line filtering effect):

X̂2(z) =
(
X(z) + X2

Y (z) + k Ci
1(z)

)
H(z)

X2
Y (z) = −Y (zejπ) = −Y (−z)

Ci
1(z) = (1 + j z−1)/(1 + z−2)

H(z) = (1− z−4)/(1− z−1)

(12)

In addition to the desired “X” position information, the
system response contains a “crosstalk” or “alias” contri-
bution XY . The constant offsetk introduces a “carrier
feedthrough” (as can be seen from eqns. 11 –Ci

1(z) does
not converge for|z| == 1). The “filter” response,H(z), a
consequence of the delay line, features zeroes atfs

4 and fs

2
thus effectively notching thek contribution.
Evaluatingz at real frequencies, the crosstalk term be-
comes

X2
Y (f) = −Y (ej2πfTse−j2π fs

2 Ts) = −Y (f − fs/2)

i.e. theY channel feeds intôX2 but shifted byfs

2 . This
means that e.g. a purely sinusoidal vertical beam motion
y(t) = y0 sin(ωs

2 t) appears at the outputx̂ as a steady state
error x̂(t) = y0. The analogous crosstalk contributions to
Ŷ 2, X̂1 andŶ 1 are

Y 2
X (f) = −X(f − fs

2 )
X1

Y (f) =
√
−j
2 Y (f − fs

4 )−
√

j
2 Y (f + fs

4 )
Y 1

X (f) =
√
−j
2 X(f − fs

4 )−
√

j
2 X(f + fs

4 )
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Figure 5: System frequency response (limited to the first
Nyquist zone) showingy–x crosstalk for the “clockwise”
(left) and “butterfly” (right) schemes.

Note that although from looking at fig. 3 the “butterfly”
multiplexing scheme might seem favorable because theX
andY contributions are farther separated inS1 than they
are inS2, the opposite is actually true: as illustrated by
fig. 5, the demultiplexing process shifts the spectral contri-
butionsX andY in different directions and whereasX2

Y

ends up centered aroundfs

2 , X1
Y is only separated byfs

4
from the desiredX at base band, effectively reducing the
useful system bandwidth by a factor of two.

CONCLUSION

Multiplexing BPM processors suffer fromx−y crosstalk
in addition to “normal” aliasing3 as a consequence of a fi-
nite multiplexing rate. The crosstalk signal is shifted in
frequency by an amount determined by the clock rate, the
pickup geometry and scanning sequence.
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3Although we assumed the motion to be band limited, in a real system
the necessary filtering upstream of the RF detector is unrealizable. The
multiplexed signals2 could be filtered with aband passaround fs

4
to

eliminate crosstalk errors. Aliases from spectral components beyond the
first Nyquist zone still constitute a problem, however.
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