
USE OF OPTICAL TRANSITION RADIATION INTERFEROMETRY FOR 
ENERGY SPREAD AND DIVERGENCE MEASUREMENTS 

R. B. Fiorito and A.G. Shkvarunets, Institute for Research in Electronics and Applied Physics, 
University of Maryland, College Park, MD 20742, USA

Abstract 
 OTR interferometry (OTRI) has been shown to be an 

excellent diagnostic for measuring the rms divergence and 
emittance of relativistic electron beams when the 
fractional energy spread ∆γ/γ is less than the normalized 
rms divergence σ = γθrms. This is the case for most beams 
previously diagnosed with OTRI. To extend this 
diagnostic capability to beams with larger energy spreads, 
we have calculated the effects of all the parameters 
effecting the visibility of OTR interferences, V; i.e. 
energy spread, angular divergence, the ratio of foil 
separation to wavelength ratio, d/λ and filter band pass.  
We have shown that: 1) for a given ∆γ/γ, the sensitivity of 
V to σ is proportional to the observation angle θ0, the 
fringe order n and the ratio d/λ ; 2) the sensitivity of V to 
∆γ/γ is independent of θ0 and n but is proportional to d/λ. 
Thus, by adjusting d/λ, and choosing the appropriate 
fringe order, one can separate out and measure both the 
energy spread and divergence. However, the filter band 
pass must decrease with θ0 and n.  Results of our 
calculations will be given for various beams of interest. 

INTRODUCTION 
A conventional optical transition radiation 

interferometer [1] consists of two parallel thin foils, 
oriented at 45 degrees with respect to the electron beam. 
A charged particle or particle beam produces forward 
directed OTR from the first foil and backward directed 
OTR from the second foil, which is usually a mirror.       
Interferences between the two radiations will be seen near 
the direction of specular reflection when the distance 
between the foils, d is comparable to the vacuum 
coherence length, LV, the distance in which phase (φ) of 
field of the electron and the OTR photon differ by π.  

The component of intensity of OTR interferences 
parallel to the plane of incidence can be written as 
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α is the fine structure constant, γ is the Lorentz factor of 
the beam, λ is the observed wavelength, 

2 2 1/ 2( )x yθ = θ + θ   is the observation angle measured with 

respect to the direction of specular reflection, θx is the x 
component of  θ  projected onto a plane perpendicular to 
the direction of specular reflection and ω is the angular 
frequency of the observed photon. 

We have developed a useful rms beam divergence  
diagnostic using OTR interferences [2]. In this method 
one focuses the beam to a waist. Then the visibility of the 
interference pattern is primarily a function of the rms 
beam divergence, θ rms provided that the energy spread of 
the beam is less than the normalized divergence, 
σ = γ θrms. This is the usual case observed for high energy 
beams. Also, if one observes perpendicular and parallel  
polarized OTR interferences, i.e. by inserting a variable 
polarizer into the optical path, the corresponding 
components of the divergence can be measured. 

Since the visibility is also affected by the optical 
bandwidth of the observation, one must take care to make 
this narrow enough so that the change in visibility due to 
the divergence can be seen. The inter foil distance and the 
filter band pass must be designed to produce the required 
number and spacing of the fringes for a given range of 
divergence. This is typically done with the aid of a 
computer code, which calculates the OTR interferences,  
for example, Eq. (1) convolved with a Gaussian 
distribution of particle trajectory angles and a given filter 
transmission function. The fit of measured to calculated 
interferences give the beam energy via the position of the 
fringes to about 1% precision and the rms divergence to 
about 10 % precision [2]. 

Recent theoretical studies have considered use of OTR 
from a stack of multiple dielectric foils as a beam energy 
distribution diagnostic [3]. In this study the effect of 
divergence is neglected. We are currently planning to 
measure divergence and transverse emittance of a low 
energy beam (8 MeV) where nonlinear space charge 
forces create a large energy spread on the beam (1- 10 %), 
and the normalized divergence σ=γθrms  ~ 0.03, which is 
comparable to the energy spread.  For this application a 
careful analysis of the effects of all beam and 
measurement parameters and a strategy for separating out 
the effects of divergence and energy spread is required. 

APPROACH 
Our approach to this problem is twofold: 

1.   Calculate of the effect of variations of beam angle 
(divergence), energy spread and wavelength (filter band 
pass) on the difference in phase between OTR photons 
produce at each foil. It is this phase that determines the 
fringe visibility and corresponding capability of OTR 
interferometry (OTRI) to diagnose beam parameters with 
good sensitivity and precision. 
2.  Develop estimates and computer codes which 
convolve variation effects with OTRI patterns to 
determine and define parameter ranges needed to separate 
out effects of energy spread and beam divergence. 
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Calculation of the phase and its variation 
To illustrate our method we will calculate the phase of 

forward directed photons produced at each foil of an OTR  
 

 
 
 
 
 
 
 

 
 
 

Figure 1: Diagram of an ideal forward directed OTR 
interferometer.  

interferometer observed in the plane of incidence,  i. e. the 
plane formed by the average velocity vector of the beam 
and the observation direction as shown by the arrows in 
Figure 1. A similar analysis pertains to forward-backward 
OTRI, and can be extended out of the plane of incidence. 

The phases of the OTR photons generated at foils 1 and 
2 are given respectively by: 
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where k is the wave number of the photon, d is distance 
between the foils, θx is the x component of the observation 
angle in the plane of incidence, θe is the trajectory angle of 
the electron, and θex is the x component of this angle. In 
the limit of small angles and relativistic energies, the 
phase difference at the interference maxima is given by 
∆ψ =2nπ  or: 
 

2 1/ 2 2( 1) / 1 /γ − γ + θ −θ ⋅ θ − = λx x e n d                              (3) 
 
where n is the fringe order and λ is the observed wave- 
length.  The total variation of Eq. (3) gives: 
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where the term ∆ξ refers to a finite variation or spread in 
the associated variable ξ. 

We choose ∆θx = 0, i.e. a fixed angle of observation; 
and θe = 0, i.e. the beam direction along the axis. Note 
that if ∆n =0, the fringes are 100% visible and if ∆n ~ 1, 
they are washed out (0% visibility).  We estimate that ∆n 
= 0.5  as the value of highest sensitivity to a given 
variable variation. Then Eq. (4) becomes: 
 

30.5 ( / )[ / ] /∆ = = λ ∆γ γ + θ ∆θ + ∆λ λx en d n  (5) 
 

From this fundamental equation we can estimate how 
variations in energy spread ∆γ, angular divergence, ∆θe 
and filter bandwidth, ∆λ affect the visibility of OTR 
interference fringes.  

By setting the variation of two of the three variables on 
the right hand side of Eq. (5) equal to zero, we can 
determine the dependence of the remaining variation on 
θx , γ, λ and d.  For example, if we set the variations ∆θe = 
∆λ = 0, and fix d/λ, we conclude that the effect of energy 
spread, ∆γ on the fringe visibility decreases as γ-3 but is 
independent of θx. Similarly if ∆γ and ∆λ are neglected, 
the effect of ∆θe on the visibility is proportional to θx but 
is independent of the energy, γ. Also, the effect of 
bandwidth is proportional to the fringe order n but is 
independent of the beam energy.  
   These dependences can be used to advantage to 
diagnose either the energy spread or the divergence. 
However, control of the bandwidth is necessary for both 
diagnostics. We can experimentally adjust d and λ  to 
optimize the number of fringes for a given range of 
divergence or energy spread. 
 

Table I. Design Parameters for OTR Interferometer 

 

RESULTS OF VARIATIONAL ANALYSIS 
Consider a measurement of the energy spread ∆γ. The 

analysis given above shows that lower order fringes, 
which are minimally affected by ∆λ and ∆θ, are most 
useful to measure ∆γ. On the other hand for maximal 
sensitivity to divergence it is useful to employ higher 
order fringes. 

Estimated design parameters for an OTR interferometer 
are presented in Table I. for various beam energies, 
energy spreads and divergences. We include parameters 
for 95 MeV for which the divergence was actually 
measured. 

E 
MeV 

∆E/E d 
mm 

∆θe 
mrad 

∆λ/λ  ∆n γθx 

 95 0 25.4 0.6     0 0.25 
0.75 

1 
3 

 95 0 25.4    
 

0 0.11 0.13 
1.17 

1 
3 

 95 < 0.1 25.4 0 0 <0.1   
 50 0.003 1000 0 0 0.5  
 50 0 162 0.2 0 0.5 1 
 50 0 54 0.2 0 0.5 3 
 50 0 54 0 0.007 0.5 3 
   8 0.01  9.5 0 0 0.5 1 
   8 0  9.5 0 0.006 0.5 1 
   8 0  1.5 1.8 0 0.5 0.5 
   8 0  1.5 0 0.04 0.5 0.5 
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COMPUTER CALCULATIONS 
We have developed a series of computer codes, which 

convolve the OTR intensity, e.g. Eq. (1) with energy, 
angle and filter distribution functions. The results are 
shown in Figures 2-5 for a fixed beam energy, E= 8 MeV. 
Parameters d and λ are chosen to optimize the fringe 
pattern for a measurement of either energy spread or 
divergence. 
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Figure 2: Effect of energy spread on OTR interferences; 
λ = 650nm, ∆λ = 0, ∆θe = 0, d = 10 mm. 
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Figure 3: Effect of divergence on OTR interferences; 
λ = 650nm, ∆λ = 0, ∆Ε = 0, d = 1.5 mm.  
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Figure 4: Effect of bandpass on energy spread mea-
surement; λ=650nm, ∆Ε=0.08MeV, ∆θe=0, d= 10mm.  
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Figure 5: Effect of bandpass on divergence measurement; 
λ = 650nm, ∆θe = 1.8 mrad, ∆Ε = 0 MeV, d= 1.5 mm. 

 
Figure 2. e.g. shows that effect of the energy spread on 

fringe visibility is independent of angle. Comparatively, 
Figure 3. shows the angular dependence of the visibility 
for different beam divergences, i.e. that a larger 
divergence washes out the fringes at higher orders more 
rapidly than a smaller divergence.  Figure 4. shows the 
effect of band pass on energy spread measurements and  
that lower fringe orders should be used to measure energy 
spread to avoid the effect of ∆λ.  Similarly Figure 5. 
shows the effect of band pass on divergence 
measurements.  

CONCLUSIONS 
Variational analysis has resulted in a number of simple 

conclusions affecting the ability of OTRI to measure 
beam divergence and energy spread: (a) the effect of 
energy spread on OTRI is independent of observation 
angle and the fringe order and falls off as γ-3 ; (b) the 
effect of divergence is proportional to the observation 
angle; (c) the effect of bandwidth is proportional to the 
fringe order; (d) the scaling of energy spread and 
divergence effects depends on d and λ, which can both be 
adjusted for diagnostic purposes. 

The above results have been verified by more exact 
analysis using computer calculations and are further 
verified by experimental data. 

We are using these results to design OTRI diagnostics 
to separate out and measure both energy spread and 
divergence. 
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