% TRIUMF

Design of a multi-harmonic buncher for TRIUMF 500 MeV cyclotron

<u>S. Saminathan</u>, R. Baartman, Y. Bylinski, M. Ilagan, P. Jung, O. Law, R. E. Laxdal, M. Marchetto, T. Planche, V. Zvyagintsev

TRIUMF, Vancouver, BC, CANADA

CYC2022, Beijing, China

2022-12-05

Overview

- Motivation
- Status on the injection beamline upgrade program
- Present buncher system
- New buncher system
- Summary and outlook

Motivation

Growing demand for higher proton beams out of cyclotron (Total extracted current ~400 μA)

- Injection beamline upgrade program
 - Injection of high intense high brightness beams
 - Reliable operation of injection beamline

Beam species	H-
Beam energy	300 keV
Maximum beam intensity	1 mA
Duty cycle	0.1 % to 99 %
Bunching frequency	23.06 MHz

Table:1 Basic beam requirements

Fig. 1: TRIUMF 500 MeV H- cyclotron

Status on the injection upgrade program

Current deliverables:

- New ion source terminal (I2)
- New beam transport section from I2 to I1
- Transport section upgrade
 from I1 to vertical section
- Bunching systems
- Machine protection
- Magnetic stray field compensation
- Diagnostics
- Controls (EPICS)

* R. Baartman, ``Optics Design of the ISIS Vertical Section Replacement", TRI-DN-09-11, TRIUMF document-22849

Present buncher system

Fig. 3: Present 46 MHz 2nd buncher

Aperture radius	2.54 cm
1st harmonic	23.06 MHz
2nd harmonic	46.12 MHz
beta•lambda	33.53 cm

Table:2 Present buncher *

* Baartman, R A and Dutto, G and Schmor, P W, "The TRIUMF high efficiency beambunching system", Proceedings of the Tenth International Conference on Cyclotrons and their Applications, East Lansing, Michigan, US, 1984

Fig. 4: Calculated electrostatic potential contour by using the code POISSON/SUPERFISH

Fig. 5: Calculated electric field along the axis of the buncher with an applied potential of 1 V.

A novel multi-harmonic buncher

Fig. 6: A concept layout of the

multi-harmonic buncher cavity *

Aperture radius	1.27 cm
1st harmonic	23.06 MHz
2nd harmonic	46.12 MHz
3rd harmonic	69.18 MHz
Re-buncher	23.06 MHz

Table:3 New multi-buncher

Courtesy: * proposed by V. Zvyangintsev

Fig. 7: Calculated electrostatic potential contour by using the code COMSOL

Fig. 8: Calculated electric field along the axis of the buncher with an applied potential of 1 V.

Initial particle distributions

Simulation tool

Particle-in-cell code WARP *

Fig. 9: Calculated initial longitudinal phase-space

7

Fig. 10: Calculated initial transverse phase-space

A. Friedman et al., Computational Methods in the Warp Code Framework for Kinetic Simulations of Particle Beams and Plasmas, in IEEE Transactions on Plasma Science, vol. 42, no. 5, pp. 1321-1334, May 2014

Present 1st & 2nd harmonic buncher (I = 650 μA)

Fig. 11: Calculated longitudinal phase-space

Fig. 12: Calculated beam envelope (2RMS, positive for x, negative for y, longitudinal

for z)

Fig. 13: Calculated transverse phase-space

New multi-harmonic (I = $650 \mu A$)

Fig. 14: Calculated longitudinal phase-space

Fig. 15: Calculated beam envelope (2RMS, positive for x, negative for y, longitudinal

for z)

Fig. 16: Calculated transverse phase-space

New multi-harmonic with re-buncher (I = 650 μ A)

Fig. 14: Calculated longitudinal phase-space

Fig. 15: Calculated beam envelope (2RMS, positive for x, negative for y, longitudinal

for z)

Fig. 16: Calculated transverse phase-space

New multi-harmonic with re-buncher (I = 1 mA)

Fig. 17: Calculated longitudinal phase-space

Fig. 18: Calculated beam envelope (2RMS, positive for x, negative for y, longitudinal

for z)

Fig. 19: Calculated transverse phase-space

Summary

- A novel multi-harmonic buncher system has been designed, which will be operated by up to three harmonics.
- The beam dynamics studies have been performed, including the space-charge effects using the particle-in-cell code WARP.
- The new bunching system will be a combination of multi-harmonic and re-buncher for transporting beam injection beamline intensity higher than 500 μA.
- Simulation results of longitudinal beam dynamics are presented for transporting beam intensity up to 1 mA.
- The bunching efficiency of this system is about 67 % (± 25 deg. and $\Delta p/p = \pm 0.5$ %) at 1 mA injection line current could support up to 650 µA extracted currents

∂TRIUMF

Thank you Merci

www.triumf.ca Follow us @TRIUMFLab

Discovery, accelerated

13