

Upgrade and current status of high-

<u>Kazunari Yamada</u> RIKEN Nishina Center

MOAI02, Cyclotrons2022, Dec. 5th, 2022

1. Overview of RIKEN Ring Cyclotron

2. Upgrade of high-frequency system for RRC

3. Upgrade results and current status

RIKEN RI Beam Factory (RIBF)

(2 linacs, 1 AVF cyclotron)

4 Boosters (4 ring cyclotrons)

Scientific goals of RIBF:

- Establish ultimate nuclear model
- Elucidate elements synthesis
- Promote application of ion beams

RI beam separator

- Acceleration of all ions up to 345 MeV/u (70% of C) in CW mode
- Production of RI beams in the whole mass region

RIKEN RI Beam Factory (RIBF)

(2 linacs, 1 AVF cyclotron)

4 Boosters (4 ring cyclotrons)

Scientific goals of RIBF:

- Establish ultimate nuclear model
- Elucidate elements synthesis
- Promote application of ion beams

RI beam separator

- Acceleration of all ions up to 345 MeV/u (70% of C) in CW mode
- Production of RI beams in the whole mass region

Uranium acceleration

IRC

Helium gas stripper @ 11 MeV/u

Graphite sheet stripper @ 50 MeV/u

Uranium acceleration

IRC

Helium gas stripper @ 11 MeV/u

Graphite sheet stripper @ 50 MeV/u

RIKEN Ring Cyclotron (RRC)

- Normal-conducting isochronous ring cyclotron
- In operation since 1987
- Max. 135 MeV/u for light ions up to A≈30
- Frequently used in the RIBF accelerator complex

Specifications of RRC

K-value	540 MeV
Sectors	4
Sector angle	50°
Pole gap	80 mm
Maximum field	1.6 T
Trim coils	26
Velocity gain	4.0
Mean injection radius	89 cm
Mean extraction radius	356 cm
Acceleration cavities	2
Frequency range	18-42 MHz
Harmonics	5, 9, etc.

Y. Yano, Proc. of Cyclotrons 1992, 102 (1992).

RIKEN Ring Cyclotron (RRC)

RIKEN Ring Cyclotron (RRC)

T. Fujisawa et al., NIM A292 (1990) 1.

High-frequency system of RRC

Rf amplifiers with tetrode are used.

T. Fujisawa et al., Sci. Papers of IPCR79 (1985) 12.T. Fujisawa, https://Nishina-preprints.riken.jp /article/data/521/data-1.pdf

		STU	JB	Frequency range	18-42 MHz
			1.17	Rf power output	150 kW max.
	AL INSK			Impedance matching	all pass network
		alkality souther			+variable capacitor $\pm variable stub$
				LLRF	analog feedback
				Voltage stability	< 0.1%
1.0				Phase stability	$< 0.1^{\circ}$
		RS207	VC VC VC VC VC VC VC VC VC	LLRF	
LLRF	-	\rightarrow	-	───┤ └	┣┼
analog					
	Ir. WBA 1 kW	Tetrode 15 kW	Tetrode 150	kW	
		RS2012CJ	RS20425K		
		CND asthada		11	RF ←
		GIND. CATRODE	(JIVI) grid		

Matching circuits are omitted from figure

Transmission efficiency*

*Stripping efficiency is excluled.

The accuracy of the Faraday cups sometimes makes efficiency appear to be increasing downstream.

Insufficient voltage in Uranium acceleration

Uranium acceleration: $f_0 = 18.25 \text{ MHz}$, $V_{gap} = 85 \text{ kV}$

Insufficient voltage limits the beam intensity due to the space charge effect.

Example for space charge limit

$$h = 9, g_r = 1, \xi = 2.7, \beta = 0.15, \gamma = 1.0115,$$

 $v_x = 1.1, V_{rf} = 300 \text{ kV}, V_m = 6334 \text{ MV}, Z_0 = 377 \Omega$

$$I_{\rm max} = 2.3 \ {
m p}\mu{
m A}$$
 for ${
m ^{238}U^{35+}}$

 $I_{
m max}=rac{h}{2g_r\xi^3eta^3\gamma
u_x^4}rac{V_{
m rf}^3}{V_m^2Z_0}$

R. Baartman, Proc. of Cyclotrons2013, 305 (2013).

Why so low voltage?

Frequency for uranium acceleration: 18.25 MHz

 \rightarrow Out of the design range (20 ~ 45 MHz)

Gap between dee and movable box: 22.5 mm

- \rightarrow Low shunt-impedance and frequent discharge
- → Limit maximum voltage ~ **85 kV**

Frequency range (design)	20-45 MHz
Shunt impedance (calc.)	$61-594 \text{ k}\Omega$
Shunt impedance at 18.4 MHz (calc.)	$48.4 \text{ k}\Omega$
Q_0 at 18.4 MHz (calc.)	8865
Maximum voltage at 18.25 MHz	85 kV

Frequent discharge in original cavity

Numerous discharge marks were observed on the inner surface during maintenance.

Movable box

Dee

Modification of RRC cavity

New slanted stem structure was adopted to shift frequency range to lower side.

Increased inductance helps to reduce the capacitance for the same frequency.

Reduced capacitance resulted in the increased shunt impedance.

Voltage at 18.25 MHz

by a factor of 1.5 or more.

can be increased

	Original cavity	Modified cavity
Frequency range (design)	20-45 MHz	16-38.8 MHz
Shunt impedance (calc.)	$61-594 \text{ k}\Omega$	$78-451 \text{ k}\Omega$
Shunt impedance at 18.25 MHz (calc.)	\sim 48 k Ω	\sim 99 k Ω
Maximum voltage at 18.25 MHz	\sim 85 kV	>120 kV

Design of modified cavity

We decided to modify the cavity by replacing only its inner conductor (Stem & Dee). 3D electromagnetic calculations were performed to optimize the shape.

Mounting part has the same dimensions.

Design parameters (calc.)

Frequency range	16-38.8 MHz
Stroke of MBOX	680 mm each
Shunt impedance	78-451 kΩ
Shunt impedance at 18.25 MHz	99.4 k Ω
Q_0	11160
Rf power input	200 kW max.
Material	oxygen-free copper

Radial voltage distribution

Radial voltage distribution was taken into account to maintain the bunch compression effect by high-frequency magnetic field.

W. Joho, Part. Accel. 6, 41 (1974).

Radially increasing distribution is required. (Especially at higher frequencies.)

Dimension (b) helps to compensate for mid-sag.

The mid-sag was kept to a level that did not affect.

Modification work

Disassembly of the original cavity (2018)

Modification work

Assembly of the new inner conductor (2018)

Completed!

Renewal of rf control systems

- The hardware relay logic was replaced by a **PLC**.
- Motors and drivers for cavity resonators were replaced.
- All components are directly controlled by the PLC.
- Remote control interface was shifted to Ethernet base.

New system

LLRFs were used as it.

Merit of the renewal

- Fast rf recovery time
- Significantly reduces amplifier damage
- Improved resolution of voltage and phase set points

Renewal of grid power supplies

The aging grid power supply was also updated.

They were used for over **30 years** (unrepairable and unstable).

Since they are placed in a radiation environment, they were manufactured using a standard logic IC, etc. **without using a microcontroller**.

Old power supplies

New power supplies

Results of low power test

Frequency response of the modified resonator measured with a network analyzer.

 \rightarrow The frequency response is **almost exactly as expected** from the calculations.

Each point is the measured value and the curve is the calculated result.

Results of low power test

Quality factors were also measured with a network analyzer.

The quality factor at each frequency was **almost 80%** of the calculation. \rightarrow The results were as expected.

Internal quality factor Q_0

Each point is the measured value and the curve is the calculated result.

Results of high power test

160 kV operation was achieved by increasing the anode voltage of the final-stage tetrode from 10 kV to 12 kV.

The modification of the RRC cavity was successfully commissioned. The acceleration voltage was increased from 85 kV to **over 150 kV**.

RF#1

Constant of the	実調紙		0.0.000000	10	定码		
检和	[(#)]	-32.06	85 ftt	LIK)	44 4	327 80	1 14
螺匠 ·	[kV]	84.86	IR.F.	[kV]	4 4	85.51	* *
トランゲ スタアンプ 出式	波 (11)	278	がわ	[-]		143	
トラング スカアンプ 反身	Ext [M]	8	n" 52492			4000	
負荷	191.	59.3	∧* ,52,同波	徽		1	
VSWR		1.33	小声和雪	JE [kV]		40.00	
使相差	[度]	-3.0	C開時の指	TE [KV]		20.00	
进行波能力	[kW]	120.3	常田 527	分割数		5000	
反射波電力	[kW]	2.4	CW後分が待ち	時間 [秒]		2.0	11.23
	1	家	贩实测销		12.	1.5.1.7	
	1.00	中間波				眼	
TICAL	1	TE	肥液	TELE		電流	
フィラメント		-	85.8 A			924	٨

RF#2

		実測範			1	1993		
	40.40	197	83.50	46.40	001	44 4	171.40	> >>
	WEFF	[kV]	83.36	REFE	[kV]	4 4	83.35	> >>
	トラング スタアンプ 出し	力波(例	279	ゲイン	1-1		243	100
	トラングスケアンプ 反	hisk (M)	0	八 馬太福			4000	
	如初	[0]	48.8	∧* 352,阿波	数		1	
2017/10	VSWR		1.04	N 5335	E DAVI		40.00	
	位相差	[庚]	-0.2	(別時の語	FE [kV]		35.00	
	进行波能力	(k#)	92.6	電圧527	分割数		5000	
	反射波能力	[kW]	0.0	CW後分が持ち	時間 [秒]	1.8.8	2.0	15.5
		La service	策	返火测统	1.			
			中間膜			蔡段		
	12.32	1	RJE	地波	開打		市政	
	フィラメント		-	77.0 1			832	. 1

~	Γ		Ļ
	ヽ	1	

	口冷却水温 25 3	度[[泉]] 中間	援727 出日 31	□温度[度] ∩	第51支アン。	1日回編展日 42-3	<u>1</u>	豫归赵LMMY2品。 205	展11度1
	20.0	10	間段727 3	品度名[度]	総技)	97 温度差日	息] 雅	ki级DUMMY温度:	差1度]
			5.7	1	-	17.0		4.2	
		实测值				(没)	定值。		
		140	-19.37	1	衍相	D度J	-	340.60	• •
		IKVI .	159.24	1	inth	[kV]	-	160.00	* *
	スタアンプ 111.25	波制	472	1	り イン			170	
	スタアンプ しんあり	波制	0		小龙塘			4200	
		191	53.1		小原周波	教		1	
2019/07			1.09		小瓜時間	h [kV]		65.00	
2015/07	1	[痕]	2.7		ここの言い	Ji [kV]		45.00	
	素物力	[kW]	156.7		11日 550	分割数		5000	
	要指力	IRWI	0.2	CW後	525 符ち	時間 [秒]	19-5	1.0	
				能激获	則値				
			0.07	以发			豫	制装	
	CHC:	181		市流		银油		馆旅	
	1221-			76.9	A			806	A
	ノッド	-128	¥	0.071	A	-311	Y	0.67	Å
	× 1.	5.22	kV	1.60	A	11.91	kV	24.2	A
	11. 57	704	V	0 081	1	973	. V	0 10	4

口冷却冰滞	品度[度] 。	中間表757 出日	1温度[度]	総限力	7 出口温度[康	1	終我DUMY 温度	[度]	
26.8	26.8 32.		4		43.9		29.6		
	Con La Cal	中間我727~2	品度会工度上	能限	アンプ温度会 1度] 爺	aggummY温度到	【康】	
11-11-2.5		5.6)	***	17.1		2.8		
	实测值				認知	伯占			
	100	-162.39)	应相	1481	• •	287.20		
	[kV]	158.64		itth	• [kV]	4 4	160.00	> >>	
スタアンン 1110	USR WI	294		デイン	1-1		81		
スタアンプ かく	同波 110	8	,	小步入中沿			4300		
	191	50.3	,	小水雨湯	微		1		
		1.06	. ,	小瓜時智	ch trýl		65.00		
(口放门	2.8	-	こその目	da TRVI		45.00		
政制法	[kW]	171.1	1	国日 527°	分割数		5000		
皮征力	[kw]	0.1	CWill	ランプ 得す	5時間 [秒]	-	1.0		
			電源次:	期值					
		中国	因要			鄣	\$1次		
C.J.C.		fich	自己加		tteh		物脉		
>メント	-		86.4	A			933	A	
ノッド	-1	30 V	0.045	j A	-310	Ŷ	0.04	Å	
1. 1.	6.	02 kV	2.16	A	11.84	kV	27.3	A	
11. 2	8	06 V	0 048	3 4	980	V	0.06	A	

Effects of voltage enhancement

Radial beam pattern of ²³⁸U³⁵⁺ acceleration **N. Fukunishi**

Current beam intensity

Transmission efficiency*

*Stripping efficiency is excluled.

The accuracy of the Faraday cups sometimes makes efficiency appear to be increasing downstream.

Efficiency of RRC improved to about 90%.

(Excluding the decelerating phase component from RILAC2 operating at 36.5 MHz.)

Decrease in trip rate

Beam availability

Availability = actual BT / scheduled BT

Present issue

The phenomenon of beam transmission efficiency decreasing under the **influence of receiving voltage fluctuations** is clearly visible.

RF voltage is **changing slightly** (< 0.1%) despite feedback.

- 6600 V receiving voltage
- Filament current of tetrode
- Anode voltage of tetrode
 - Resonator#1 voltage (monitored by lock-in amp.)

Plans for near future

Currently rf voltage is fine-tuned manually by the operator.

Digital low-level circuit will be introduced next year.

A similar circuit was introduced into the RFQ earlier.

Summary

- The high-frequency systems for the RRC were upgraded in order to increase the acceleration voltage at 18.25 MHz operation by remodeling its cavity resonators and rf controllers.
- The upgrade was successfully commissioned, and the maximum gap voltage at 18.25 MHz improved from 85 kV to more than 150 kV.
- The beam intensity of ²³⁸U at the RIBF was increased up to 117 pnA by overcoming the beam intensity limitation of RRC due to the space charge effect.