

A Compact 10 Tesla Superconducting 250 MeV Synchrocylotron for Cancer Therapy

Lawrence Tian

Proton Era 3.0 – Accelerated Growth Stage

1903

The first experiments on radiation therapy with protons were conducted at the Lawrence Berkeley National Laboratory at the University of California, Berkeley. The world's first proton therapy treatment took place in 1954, for a patient with advanced breast cancer.

V 1952

Opening of the MD Anderson Proton Therapy Center

V 2006

V 2012

In 2013, Mevion's compact, integrated proton therapy system receives FDA approval, ushering in a new era in proton therapy.

PT 2.0 - Multi-Room System

effect in 1903.

The first hospital-based proton therapy center is built at Loma Linda University Medical Center in the United States, ushering in the modern era of proton therapy

1990

Construction starts on the Shanghai Proton and Heavy Ion Cancer

2009

In 2017, Mevion's S250i HYPERSCAN system with pencil beam scanning receives FDA approval.

2017

PT 3.0 – Single Room System

The Need For a More Affordable System

Conventional Multi-Room Center

- \$100-\$300M project cost
- Stand-alone separate facilities
- Financial performance challenges

- Too Big
 - Typically 3 or More Rooms
 - Up to 100,000 Ft.2 for 5 Rooms
- Too Costly
 - > \$200M for Recent Facility
 - > \$1M Annual Energy Costs
 - > 100 Staff for 5 Rooms
- Too Complex
 - Multiple Rooms Depend on One Accelerator
 - Complex Beam Transport Requiring Many Steering Magnets & Power Supplies and Large Gantries
 - Daily Maintenance Required
 - Beam Switching & Queuing Complicate Patient Setup
 - Historic Lack of Integrated Imaging & Oncology Info-System Connectivity

World's Smallest S250 MeV Proton Accelerator

- Development began in 2004 in collaboration with MIT with the direct goal of mounting the accelerator on a rotating gantry.
- Design analysis showed that in order to achieve the desired size, a 10 Tesla magnet field strength was needed.

Solving the 10 Tesla Problem

- High field design requires a high current density conductor
- Nb₃Sn conductor can achieve the required 2000 A current, but is difficult to work with and vulnerable to radial forces.
- Mevion utilizes a specialized conductor design that is manufactured in-house via a proprietary process.

Nb₃Sn Strand

Integrated Conductor

Accelerator Key Parameters

Parameter	Value
Maximum Energy	230 MeV or 250 MeV
Beam Current Range	0 to 20+ nA
Radius	1.8 m
Weight	15 tons
Coil	Nb ₃ Sn
Magnetic Field	10 T
Average Power	15 kW
Cooling	4
Time Structure	Pulsed at 750 Hz
RF	Single dee, ³ ⁄ ₄ wave resonator
Extraction	Passive regenerative
Ion Source	PIG cold cathode
Vacuum	Dry system

Subsystems: Smaller and More Efficient

Miniature Penning Ion Source

Efficient Variable Frequency Drive SC Magnet Power Supply

Combined X-Y Scanning Magnet

Wide Band FM Resonator

Compact 16 kW RF Amplifier

Solid State Scanning Magnet Four Quadrant Drives

HYPERSCAN – IMPT Beam Delivery

Transforming the Market

Mevion Compact Proton Therapy

- \$30M project cost
- Integrated to radiation departments
- Successful financial breakeven

Continuing to Innovate

nts on with protons t the y National University of ey. The therapy ce in 1954, dvanced

Opening of the MD Anderson Proton Therapy Center

▼ 2006

7 2012

In 2013, Mevion's compact, integrated proton therapy system receives FDA approval, ushering in a new era in proton therapy.

PT 2.0 - Multi-Room System

🔺 1990

ospital-based proton

nter is built at Loma

ersity Medical Center

ed States, ushering in n era of pro 🕋 therapy

. / . .

▲ 2009

Construction starts on the Shanghai Proton and Heavy Ion Cancer

PT 3.0 – Single Room System

A 2017

In 2017, Mevion's S250i HYPERSCAN system with pencil beam scanning receives FDA approval.

The Leader in Compact Proton Therapy

...to provide superior proton therapy to as many cancer patients as possible...