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INTRODUCTION
Beam loss is one of the major concerns for high power

proton (and H−) accelerators. With the growing of beam

power, the fractional beam loss permitted by the machine

radioactivation issue becomes smaller and thus more chal-

lenging. For H− accelerators, the primary beam loss mecha-

nisms include halo formation through beam dynamics prob-

lems (e.g. coupling resonance crossing), residual gas strip-

ping, electromagnetic stripping, and intra-beam stripping.

In the TRIUMF 500 MeV H− cyclotron, the total beam loss

outside the central region is < 10% at present: ∼1% by

gas stripping (under 2× 10−8 Torr residual pressure), ∼3%

by electromagnetic stripping (from 400 to 480 MeV), and

≤2% by vertical halo growth due to resonance crossings.

It was queried how much loss is caused by the intra-beam

stripping. The intra-beam stripping arises from binary colli-

sions inside a H− bunch that cause loosely-bound electrons

to be stripped off, leaving neutral H0 particles, which are

subsequently lost. To address this issue for the TRIUMF

cyclotron, we derive intra-beam stripping loss rate for an

isochronous cyclotron. And then, we apply the theory to

the TRIUMF cyclotron to estimate the loss.

DERIVATION OF LOSS RATE
The particle loss rate due to the intra-beam stripping can

be calculated by considering a differential volume d~r =
dxdydz in which the incident particles with velocities be-

tween ~v1 and ~v1 + d~v1 impinge on the target particles in the

same bunch at the same location with velocities between ~v2
and ~v2 + d~v2. The number of particles scattered into a solid

angle over unit time from this collision is the product of

number of incident particles, the differential cross section,

and the number of target particles, that is,

dN

dt
= −N

2

2

∫

d~rd~v1f (~r,~v1)

∫

d~v2f (~r,~v2)|~u|σ(|~u|) , (1)

where the distribution function f (~r,~v) is normalized to 1

and f (~r,~v)d~rd~v gives the fraction of particles with coordi-

nates and velocities in the range ~r to ~r+d~r, and ~v to ~v+d~v.

N is the number of particles in the bunch, ~u = ~v1 − ~v2 is

the relative velocity between colliding particles, σ(|~u|) is

the total cross section for single electron stripping. In an

isochronous cyclotron, particles in a bunch have no colli-

sion longitudinally because any fast moving particle cannot

surpass the slow moving ones. In this case, only the trans-

verse velocities matter to the loss rate. So, f (~r,~v) can be

written as a product of independent probability density:

f (~r,~v) = f (x, vx) f (y, vy) f (z).

The density distribution is assumed to be gaussian. For the

x-x′ plane (similar for the y-y′ plane), it is:

f (x, x′) =
1

2πσx
√

ǫx/βx
exp

[

− x2

2σ2x
− (x′ + αxx/βx)

2

2ǫx/βx

]

,

where σx =
√
βxǫx. This means that the velocity distribu-

tion at certain location x has a mean value x̄′ = −αxx/βx
and a standard deviation

√

ǫx/βx. What matters to the

intra-beam stripping is the local velocity (angular) spread
√

ǫx/βx rather than the entire velocity (angular) spread√
γxǫx. So, in the beam frame, f (x, vx) can be written as:

f (x, vx) =
1

2πσxσvx
exp

(

− x2

2σ2x
− v2x

2σ2vx

)

,

similar for the f (y, vy), while f (z) is expressed as:

f (z) =
1√
2πσz

exp

(

− z2

2σ2z

)

.

Eq. 1 is then represented as:

dN

dt
= −N

2

2
IxIyIz|~u|σ(|~u|), (2)

where

Ix ≡
1√
4πσx

∫

f (vx1)dvx1

∫

f (vx2)dvx2,

f (vx1,2) =
1√
2πσvx

exp

(

−
v2x1,2
2σ2vx

)

.

Similar for Iy and f (vy1,2), while

Iz ≡
∫

f 2(z)dz =
1√
4πσz

.

So Eq. 2 becomes:

1

N

dN

dt
= − N

2(4π)3/2σxσyσz

∫

f (~v1)d~v1·
∫

f (~v2)d~v2|~u|σ(|~u|),
(3)

where

f (~v1,2) =
1

2πσvxσvy
exp

(

−
v2x1,2
2σ2vx

−
v2y1,2
2σ2vy

)

, d~v1,2 = dvx1,2dvy1,2.

In order to perform the Eq. 3 integration, we do variable

transformations:

~u = ~v1 − ~v2, ~w = ~v1 + ~v2,

So we have

v2x1 + v2x2 =
u2x + w2

x

2
, v2y1 + v2y2 =

u2y + w2
y

2
,

and

dvx1dvx2 =
1

2
duxdwx, dvy1dvy2 =

1

2
duydwy,

where 1
2 is the Jacobian of transformation. Eq. 3 thus be-

comes

1

N

dN

dt
= − N

2(4π)3/2σxσyσz

1

2πσvxσvy

1

2πσvxσvy

1

4

·
∫ +∞

−∞
exp

(

− w2
x

4σ2vx
−

w2
y

4σ2vy

)

dwxdwy

·
∫ +∞

−∞
exp

(

− u2x
4σ2vx

−
u2y
4σ2vy

)

|~u|σ(|~u|)duxduy.

Using the basic formula

∫ +∞

−∞
e−ax

2

dx =

√

π

a
(a > 0),

we can easily work out the integration over ~w:

∫ +∞

−∞
exp

(

− w2
x

4σ2vx
−

w2
y

4σ2vy

)

dwxdwy = 4πσvxσvy.

So we arrive at

1

N

dN

dt
= − N

64π5/2σxσyσzσvxσvy

∫ +∞

−∞
σ(|~u|)

√

u2x + u2y

· exp
(

− u2x
4σ2vx

−
u2y
4σ2vy

)

duxduy.

When the relative velocity dependence of the stripping

cross-section is neglected, or, for estimation purpose, we

could insert a maximum value σmax of the cross-section and

pull it out of the integral. Next, we denote

X ≡ ux
2
, Y ≡ uy

2
.

We finally obtain

1

N

dN

dt
= −

Nσmax
√

σ2vx + σ2vy

8π2σxσyσz
· F (σvx, σvy), (4)

where

F (a, b) =
1√
π

∫ +∞

−∞

√

X2 + Y 2

a2 + b2
exp

(

−X
2

a2
− Y 2

b2

)

dXdY

ab
(5)

is a dimensionless form factor.

The above derivations are performed in the beam frame.

Next, we do relativistic transformation from the beam

frame to the lab frame:

dt −→ dt/γ, σz −→ γσs,

σvx = βγcθx, σvy = βγcθy.

We end up getting the loss rate in the lab frame:

1

N

dN

dt
= −

Nσmaxβc
√

θ2x + θ2y

8π2γσxσyσs
· F (θx, θy), (6)

where β and γ are the relativistic factors, σx,y =
√

βx,yǫx,y
are the rms beam sizes in x and y, θx,y =

√

ǫx,y/βx,y are the

rms angular spreads, σs is the rms bunch length. Clearly,

the loss rate is proportional to the density of particles in

the real space. The form factor F (a, b) does not depend on

the absolute values of its parameters (a, b) but only on their

ratio, that is,

F (a, b) =
E
(

1− b2/a2
)

√

1 + b2/a2
, (7)

whereE(k) denotes the complete elliptic integral of the sec-

ond kind:

E(k) =

∫ π/2

0

√

1− k2 sin2ψdψ, | arg(1− k)| < π.

Loss Estimate for TRIUMF Cyclotron
Since the stripping cross-section depends on the velocity of

particles, first of all we have to find out the relative velocity

in the beam frame. We use smooth approximation for the

cyclotron, so we have for the radial direction

σvx = βγcθx = βγc

√

ǫx

βx
= c

√

βγǫxn
Qx

R
,

and similarly for the vertical direction

σvy = c

√

βγǫyn
Qy

R
,

where ǫxn and ǫyn are the normalized emittances of circu-

lating beam, Qx and Qy denote the radial and vertical tunes

along an equilibrium orbit of average radius R. We’ve cal-

culated the Qx, Qy and R values for 1563 static equilibrium

orbits with energy from 0.3 MeV (injection) to 500.14 MeV

(extraction) in a step of 0.32 MeV. Fig. 1 shows the resulting

relative velocity over the entire energy range. It’s seen that

the total relative velocity is between 3× 10−4 and 7× 10−4.

This is almost falling on the plateau of the cross section

curve, shown in Fig. 1, where the stripping cross section is

∼4×10−15 cm2.

Figure 1: (Left) rms relative velocity of particles in the

beam frame over the entire energy range of TRIUMF

cyclotron. (Right) intra-beam stripping cross section vs.

rms relative velocity.

Figure 2: (Left) fractional loss per turn vs. energy. (Right)

accumulated fractional loss vs. energy.

We assume a typical rf phase width of 40◦ for the bunch

and a peak current of 300 µA. These, along with the nom-

inal rf frequency of 23.055 MHz, give a bunch half length

increasing from 1.8 cm to 55 cm, and particles density in

the real space (N/(σxσyσs)) decreasing from 2.5×108/cm3

to 1.2×107/cm3. Fig. 2 shows the resulting fractional loss

per turn and the accumulated loss. The accumulated loss up

to 500 MeV, in comparison with the electromagnetic strip-

ping loss, is 3 to 4 order of magnitude lower. This is hardly

measurable. Thus it is not a concern.


