23rd International Conference on Cyclotrons and their Applications December 5-9, 2022 · Beijing, China

The beam dynamics simulation of a variable energy cyclotron for isotope production

W. W. Wang¹, K. Z. Ding², F. Jiang², J. Zhou², S. W. Xu¹

1. Hefei CAS Ion Medical and Technical Devices Co., Ltd. (CIM), Hefei, China 2. Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP), Hefei, China

Introduction

- CIMV16, has been designed by HFCIM for widely used isotope production, which can extract proton with variable energy in range of 10~16 MeV.
- the position of the stripping film is simulated and optimized to realize the convergence of the beam in different energy.
- Multi-particle beam dynamics simulation have been down to analyze the efficiency and loss of beam transmission.
- Simulations of some other optimizations have been down.

Varies energy extraction

In this cyclotron, H- will be accelerated to 16 MeV, and then stripped out two electrons to become H+ to be extracted. By adjusting the position of the stripping target, H+ of different energies can be extracted. The position of stripping target have been optimized to make the particle with different energy converged at 110 mm.

Energy	Radius	Azimuth
MeV	cm	deg
16	37.0	152
14	34.5	157
12	32.5	164
10	30.0	170

Stripping target position

Multi-particle beam dynamics

Multi-particle beam dynamics have been down by the beam dynamics code and 1000 particles have been used. The parameters of initial particles are shown as follow:

Parameters		values	
radial	R	Rc±0.25 mm	
	Pr	$\Pr \pm 15^{\circ}$	
axial	Z	0 ±2mm	
	Pz	0 \pm 5 $^{\circ}$	
Phase		-90°~0°	

Radial oscillation Axial motion The axial size of the bunch is in range of ± 7 mm, and the Radial oscillation is smaller than 3 mm.

Axial motion after extracted

Acceptance of phase is about 70 deg. The axial size of the 10 MeV particles at 110 cm is \pm 1.5 mm and larger than \pm 2 mm when the energy is 16 MeV, so the extraction of the particles should be optimized

Some other optimization

Phase motion in each gap

30

In order to control the axial size of the extracted beam, a brick is used in central region, then the axial size of the bunch can ben controlled smaller than ± 1 cm

Conclusions

The particles with different energy can converge at 110 mm by optimizing the position of the stripping target.

- Transmission efficiency of particles in accelerating region is about 95%, and the acceptance of phase is about 70 deg.
- \Box the axial size of bunch can be controlled smaller than ± 1 cm by a axial brick in central region.