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Abstract 
Using a Belmont-Pabot spiral inflector for axial beam 

injection presents difficulties when matching the beam 
emittance to the cyclotron acceptance. For an electrostatic 
inflector one of the potential solutions to this problem is to 
use transverse electric field gradients to influence and op-
timise the optics. Here we extend this approach to magnetic 
spiral inflectors. It is demonstrated that the gradient of the 
magnetic field along the central trajectory can be con-
trolled by an appropriate permanent magnet inflector de-
sign, and that these gradients have a large influence on the 
optics. The transverse gradients are numerically optimised 
and the performance compared to an optimised electro-
static spiral inflector. A faster numerical method for accu-
rately determining the electric field of an electrostatic in-
flector is also presented. 

INTRODUCTION 
Traditional Belmont-Pabot spiral inflectors suffer from a 

large vertical divergence, and in addition to this the trans-
verse-longitudinal coupling results in a de-bunching longi-
tudinal spread [1]. Both of these issues decrease the trans-
mission of the cyclotron. Recent attempts at addressing 
these problems at several cyclotron facilities have made 
use of transverse electric field gradients along the central 
path to attempt to influence the optics and focus the beam 
[2-5]. In previous work [1] we have shown that in the most 
general case the electric potential can be described, to sec-
ond order in the transverse displacements, by: 𝜙 ൌ −𝑢௥𝐸଴ − 𝑄ଵ𝐸଴ 𝑢௥ଶ − ℎ௥ଶ2  − 𝑄ଶ𝐸଴ℎ௥𝑢௥ − 𝑢௥ଶ2 𝑠̂ᇱ ⋅ 𝑬଴ 

Where 𝑄ଵሺ𝑠ሻ and 𝑄ଶሺ𝑠ሻ are quadrupole parameters, and 
may be freely selected by an inflector designer. The coor-
dinates (𝑢௥ ,ℎ௥𝑠ሻ are the standard rotated coordinates used 
in spiral inflector design, where the electric field points in 
the 𝑢ො௥ direction. The corresponding electric fields are then: 𝐸௨ೝ ൌ 𝐸଴ ൅ 𝑢௥ሺ𝑄ଵ𝐸଴ ൅ 𝑠̂ᇱ ⋅ 𝑬଴ሻ ൅ ℎ௥𝑄ଶ𝐸଴     (1a) 𝐸௛ೝ ൌ 𝑢௥𝑄ଶ𝐸଴ − ℎ௥𝑄ଵ𝐸଴                 (1b) 𝐸௦ ൌ 𝑢௥𝐸଴ᇱ − ℎ௥𝜅௦𝐸଴                   (1c) 

By numerically optimising the two free quadrupole pa-
rameters 𝑄ଵሺ𝑠ሻ,𝑄ଶሺ𝑠ሻ an inflector design was obtained that 
showed good vertical and longitudinal performance. This 
device was constructed and experimentally shown to im-
prove the transmission through the Solid Pole Cyclotron 2 
(SPC2) at iThemba LABS by 60%. 

In this article the application of a similar optimisation 
process to a permanent magnet spiral inflector is presented. 

FASTER NUMERICAL METHOD 
Optimisation of an electrostatic inflector design involves 

repeated numerical computations of the electric field, for a 
great number of proposed inflectors. This was previously 
done using TOSCA, which required about an hour per in-
flector. To speed this up in the past a method was used to 
estimate the electric field, by combining the results from a 
number of pre-calculated TOSCA simulations and linearly 
extrapolating [5]. This method could compute the transfer 
matrix of a new inflector within about 5 seconds, but 
lacked accuracy.  

A new numerical method was therefore developed that is 
able to accurately compute the inflector transfer matrix in 
a short time (about 4 seconds).  It is based on calculating 
the surface charge density on the inflector electrodes, by 
minimising the potential energy. 

Suppose that the inflector surface has been divided into 
approximate squares, of side length 𝐿௜ and containing a 
charge 𝑞௜ per square. Such a meshing of the electrodes is 
shown in Fig. 1. 

 
Figure 1: Square meshing of the negative electrode, also 
showing the centroids of the squares on both electrodes.  

The total potential energy can be expressed as: 𝑈 ൌ 12𝒒 ⋅ 𝑽௤ ൅ 𝒒 ⋅ 𝑽ா 

Where 𝑽௤ is the voltage due to the surface charges and 𝑽ா is an externally applied voltage. We write the voltage as 𝑽௤ ൌ 𝐷𝒒 where: 𝐷௜௝ ൌ 𝑓௜௝4 𝜋𝜖଴|𝒓௜ − 𝒓௝| 
 ___________________________________________  
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Here 𝒓 is the location of the centre of the square, and 𝑓௜௝ 
is a geometric factor to account for the finite size and rela-
tive orientation of the squares. As the squares become 
smaller we can set 𝑓௜௝ ൌ 1. This is done for all squares, ex-
cept where 𝑖 ൌ 𝑗, in which case the self-energy of a square 
results in: 𝐷௜௜ ൌ 24 𝜋𝜖଴𝑞௜ଶ නන 1|𝒓ଵ − 𝒓ଶ|𝑑𝑞ଵ𝑑𝑞ଶ ൎ 2 1.48654𝜋𝜖଴𝐿௜  

The total charge on electrode n is fixed to be 𝑄௡, and this 
constraint is enforced using the Lagrange multiplier 𝜆௡. To 
help with this we introduce the electrode indicator 𝑐௜௡ 
which is 1 if square i is in electrode n, and zero otherwise. 
The optimisation problem becomes: min 12𝒒 ⋅ 𝐷𝒒 ൅ 𝒒 ⋅ 𝑽ா ൅ 𝜆ଵ𝒒 ⋅ 𝒄ଵ ൅ ⋯൅ 𝜆ே𝒒 ⋅ 𝒄ே 

The solution is: 𝐷𝒒 ൅ 𝑽ா ൅ ሺ𝜆ଵ𝒄ଵ ൅⋯൅ 𝜆ே𝒄ேሻ ൌ 0 

But note that 𝐷𝒒 ൅ 𝑽ா is in fact the total voltage 𝑽, so 
the Lagrange multiplier is just negative of the voltage on 
an electrode 𝜆௡ ൌ −𝑉௡, and the surface charge per square 
is obtained from: 𝒒 ൌ Dିଵሺ𝐕 − 𝐕୉ ሻ 

These surface charges 𝒒 are computed first, and then 
stored. During run-time, when tracing the path of a particle 
through the inflector, the electric field at 𝒙 is computed as: 𝑬ሺ𝒙ሻ ൌ 14 𝜋𝜖଴෍𝑞௜ 𝒙 − 𝒓௜|𝒙 − 𝒓௜|ଷ௜  

With the caveat that the distance to the closest surface 
charge should not be too small. In practice this limit is 
found to be about twice the largest value of 𝐿௜. 

This surface charge method was tested in several simple 
cases with known analytical solutions. For a parallel plate 
capacitor, the error in the electric field between the plates 
was 0.5%. The induced surface charge on a flat earthed 
plate due to the presence of an external test charge was 
computed to within 1%. A comparison of this method with 
TOSCA is provided in Fig. 2, where they correspond quite 
well. 

MAGNETIC SPIRAL INFLECTOR 
The use of permanent magnets to construct a magnetic 

spiral inflector has been proposed in the past [6]. An ad-
vantage of such a magnetic inflector is that higher injection 
energies can be achieved than with an electric inflector, 
which will reduce the impact of space-charge in the inflec-
tor.  Here we investigate a magnetic inflector (in the ab-
sence of space charge for now), to see if it can be optimised 
in a similar way to the electric inflector, by creating quad-
rupole fields along the central path. 

The magnetic field is selected so that the force on the 
central path due to the permanent magnets is the same as 
the electric force in an electric inflector: 

𝑬 ൌ 𝐸଴𝑢ො௥ →  𝑩 ൌ −𝐸଴𝑣 ℎ෠௥ 
The magnetic field is produced by a number of modified 

Halbach rings, which are known to create a strong internal 
magnetic field and a much weaker external field. Figure 3 
shows such an inflector and Fig. 4 shows the numerically 
measured field on the central path. 

 
Figure 2: The field gradients of an inflector as computed 
using: TOSCA (blue dots), the surface charge method pre-
sented here (red dots), and the analytical approximation 
via Eq. (1) (black solid line). 

 
Figure 3: The magnetic inflector made of 8-sided Halbach 
rings. 
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Figure 4: The magnetic field (T) along the central path (m). 𝐵௨ೝ is blue, 𝐵௛ೝ is red and 𝐵௦ is yellow. The oscillations are 
due to the discrete number of rings. 

The internal field of the Halbach ring is a function of the 
magnetisation of the ring segments.  By using 8-sided 
rings, it is possible to create quadrupoles along the central 
path, as shown in Fig. 5. The radial and azimuthal compo-
nents of the magnetisation of the ring can then be expressed 
as: 𝑀௥ = 𝑀଴ሺsin𝜃 − 𝐾ଵ cos 2𝜃 − 𝐾ଶ sin 2𝜃ሻ 𝑀ఏ = 𝑀଴ሺ− cos𝜃 − 𝐾ଵ sin 2𝜃 + 𝐾ଶ cos 2𝜃ሻ 
 

Where 𝜃 refers to the azimuthal angle of the centre of 
each of the 8 segments, and 𝐾ଵ and 𝐾ଶ are quadrupole pa-
rameters.  

The magnetic field due to the inflector only can be com-
puted from the gradient of the scalar potential 𝜓. This is 
similar to the electric case, and by analogy this can be ex-
pressed as: 𝜓 = ℎ௥𝐵଴ − 𝑄ଵ𝐵଴ 𝑢௥ଶ − ℎ௥ଶ2 − 𝑄ଶ𝐵଴𝑢௥ℎ௥ − 𝑢௥ଶ2  𝑠̂ᇱ ⋅ 𝑩଴ 
 
Giving the fields to first order in the displacements 𝑢௥ ,ℎ௥: 
 𝐵௨ೝ = 𝑢௥ሺ𝑄ଵ𝐵଴ + 𝑠̂ᇱ ⋅ 𝑩଴ሻ + ℎ௥𝑄ଶ𝐵଴        (2a) 𝐵௛ೝ = −𝐵଴ +  𝑢௥𝑄ଶ𝐵଴ − ℎ௥𝑄ଵ𝐵଴           (2b) 𝐵௦ = −ℎ௥𝐵଴ᇱ + 𝑢௥𝜅௦𝐵଴                  (2c) 
 

These expressions were confirmed by numerically eval-
uating the fields, as shown in Fig. 6. Note that 𝑄ଵ,𝑄ଶ which 
describe the quadrupole nature of the magnetic fields, are 
almost proportional to 𝐾ଵ,𝐾ଶ which describe the 

magnetisation of the Halbach rings, but the exact relation-
ship depends on the size of the rings and their placement 
along the central path. 

 

 
Figure 5: Magnetisation of the rings to produce a dipole 
field (top) and normal and skew quadrupole fields (mid-
dle and bottom).  
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Figure 6: Numerical verification of Eq. (2), showing various properties plotted against the inflector path length (m). From 
left to right: 1) The K values use to design the Halbach rings. 2) The resulting Q values describing the quadrupole fields. 
3) Gradients of 𝐵௨௥, with numerical values in blue and Eq. (2) in black. 4) Gradients of 𝐵௛ೝ. 5) Gradients of 𝐵௦. 

OPTIMISATION 
The aim was to optimise the transmission of the beam 

through the SPC2 cyclotron at iThemba LABS. In the past 
the acceptance of the cyclotron was not known, and hence 
the optimisation only aimed to limit the vertical and longi-
tudinal emittance and spread [1, 5]. For this reason, a new 
numerical model of the SPC2 was created to evaluate its 
acceptance.  

The magnetic fields were partly obtained from a full 
3D TOSCA simulation of the cyclotron [7]. The electric 
field was based on a numerical solution of the electric field 
in the acceleration gap. Trim coils, based on TOSCA sim-
ulations, were added to obtain isochronism. The central tra-
jectory was found by injecting a particle backwards from 
extraction, along an accelerated equilibrium orbit, and this 
trajectory corresponded well to the original central path 
calculated by the designers of SPC2. The main losses were 
radially on the slits in the central region and vertically on 
the slits and the dees.  

It was found that an ellipse poorly represented the com-
plex acceptance shape in phase space. A better representa-
tion of the acceptance was to select and number (~104) of 
random points inside the acceptance and to replace each 
point with a ball of constant radius in phase space. The vol-
ume occupied by these balls was then a better representa-
tion of the acceptance, and testing if a new point lay inside 
the acceptance is very quick.  

The inflector simulation started in the axial hole in the 
yoke where the magnetic field is zero, and ends in the re-
gion between the inflector exit and the first acceleration 
gap, where the electric field is almost zero. 

The injected beam is focussed at the inflector entrance, 
and a first harmonic buncher is used. The voltage of the 
buncher is set so it focusses at the first acceleration gap, 
which requires accounting for the optical length of the in-
flector (𝑅ହ଺). 

To compute the transmission of the beam through SPC2 
when using a specific inflector, the procedure was: 

1. Compute the linear transfer matrix of the inflec-
tor 𝑅 

2. Select a random particle in the DC beam up-
stream of the buncher 

3. Propagate to the start of the inflector calculation 
(not linear in time due to sinusoid in buncher) 

4. Transfer the particle through the inflector using 
its linear transfer matrix 𝑅 

5. Check if the particle is in the cyclotron ac-
ceptance  

6. Go back to 2 and repeat for ~1e5 particles 

RESULTS  
The optimisation space for the electric inflector was the 

two functions 𝑄ଵሺ𝑠) and 𝑄ଶሺ𝑠). For the magnetic inflector 
it was the 𝐾ଵሺ𝑛),𝐾ଶሺ𝑛) parameters that had to be selected 
for each ring n. The optimal designs are shown in Fig. 7-8. 
Table 1 shows the transmission through SPC2 before and 
after optimisation, where the non-optimised inflector refers 
to the K = 0 case for magnetic inflectors, and the Q = 0 
case for electric inflectors. 

Table 1: Transmission through the Cyclotron 

 Electric Magnetic 
Non-optimised  26% 33% 
Optimised 43% 45% 
Relative Improvement 65% 36% 

 
Figure 7: Quadrupole parameters (m-1) vs path length 
(mm). The optimal design for the electric inflector in this 
work (left) and a comparison with previous work in [1] 
(right).  
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Figure 8: The optimal design of the magnetic inflector vs 
the path length (mm). Left: the ring magnetisation K values 
(unitless). Right: Q values (m-1) of the resultant quadrupole 
fields. 

DISCUSSION 
In both the magnetic and electric case there is a substan-

tial improvement when optimising the design. The final 
transmission of the electric and magnetic inflectors is sim-
ilar. Note that the actual transmission through the SPC2 cy-
clotron is typically 5%, which is much less than these cal-
culated values. This is partly because we have not ac-
counted for losses at extraction yet (known to be a factor 
of about 3) and the emittance of the injected beam is also 
uncertain. This is to be investigated in further work in the 
future.  

CONCLUSION 
The magnetic inflector can be optimised in a similar way 

to the electric inflector, by creating quadrupole fields in the 
transverse plane. 
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