JACoW is a publisher in Geneva, Switzerland that publishes the proceedings of accelerator conferences held around the world by an international collaboration of editors.
@inproceedings{uchiyama:cyclotrons2022-tubo04, author = {A. Uchiyama and N. Fukunishi and M. Komiyama and K. Kumagai}, title = {{Evaluation of PLC-Based EtherNet/IP Communication for Upgrade of Electromagnet Power Supply Control at RIBF}}, % booktitle = {Proc. CYCLOTRONS'22}, booktitle = {Proc. 23rd Int. Conf. Cyclotrons Appl. (CYCLOTRONS'22)}, pages = {134--137}, paper = {TUBO04}, language = {english}, keywords = {controls, Ethernet, EPICS, power-supply, network}, venue = {Beijing, China}, series = {International Conference on Cyclotrons and their Applications}, number = {23}, publisher = {JACoW Publishing, Geneva, Switzerland}, month = {10}, year = {2023}, issn = {2673-5482}, isbn = {978-3-95450-212-7}, doi = {10.18429/JACoW-CYCLOTRONS2022-TUBO04}, url = {https://jacow.org/cyclotrons2022/papers/tubo04.pdf}, abstract = {{In the Radioactive Isotope Beam Factory (RIBF), a front-end controller consisting of a computer automated measurement and control (CAMAC)-based system and I/O devices are utilized for the power supplies of many electromagnets upstream from the RIKEN RING Cyclotron. The CPU installed in the system is an x86-based CAMAC crate controller known as "CC/NET". An experimental physics and industrial control system (EPICS) input/output controller (IOC) running embedded Linux is used to remotely control the electromagnet power sup-plies. However, these CAMAC-based systems are outdated and require replacement. The FA-M3 programmable logic controller (PLC) is an alternative candidate device that can be incorporated into the magnet power supply. However, a high-reliability network between the EPICS IOC and the device is required compared to a conventional socket connection via Ethernet. Therefore, we evaluated a system that uses EtherNet/IP to communicate between these devices and the EPICS IOC. The Ether-Net/IP system is based on the TCP/IP protocol, which is widely used for field bus communications via Ethernet. An advantage of using EtherNet/IP is that it enables cost-effective reliable communication despite the use of TCP/IP. It is possible to improve the reliability of the interlock output even when using conventional TCP/IP-based network.}}, }