Paper | Title | Page |
---|---|---|
MOC02 | A Pathway to Accelerate Ion Beams up to 3 GeV with a K140 Cyclotron | 119 |
|
||
Funding: U.S. Department of Energy, Office of Science, Office of Nuclear Physics under contract number DE-AC02-05CH11231 The capabilities of the K140 88-Inch Cyclotron at Lawrence Berkeley National Laboratory (LBNL) have been extensively enhanced through generations of electron cyclotron resonance ion sources (ECRISs). The cyclotron has evolved from a light-ion accelerator into a proton to uranium accelerator and has accelerated ultra-high charge state heavy ions, such as xenon and uranium. Recently, with 124Xe49+ ions injected from VENUS (a 3rd generation ECR ion source) the 88-Inch Cyclotron reached a new record of ~ 2.6 GeV.* This is an energy increase of about fifteen-fold over what this K140 cyclotron could achieve when it started operation almost six decades ago. A 4th generation ECR ion source, MARS-D, is under development and will further raise the output energy of the cyclotron. With the higher ion charge states produced that are anticipated with a new ECR ion source, the 88-Inch Cyclotron ought to be able to accelerate ion beams of energies of 3 GeV and higher for the radiation effects testing community. This paper will present and discuss the development of the MARS-D ECR ion source and the 88-Inch Cyclotron’s recent and possible future achievements. *: D. Z. Xie, W. Lu, J. Y. Benitez, M. J. Regis, Recent Production of Ultra-High Charge State Ion Beams with VENUS, Proc. of the 23rd Int’l Workshop on ECR Ion Sources, Catania, Italy, Sept, 2018. |
||
![]() |
Slides MOC02 [11.895 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-Cyclotrons2019-MOC02 | |
About • | paper received ※ 16 September 2019 paper accepted ※ 24 September 2019 issue date ※ 20 June 2020 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |