

September 14, 2016

A COUPLED CYCLOTRON SOLUTION FOR CARBON IONS ACCELERATION

V.L. Smirnov and S.B. Vorozhtsov

Joint Institute for Nuclear Research, Dubna, Russia

Cyclotrons 2016, 11-16 September 2016, ETH Zürich

Background & Motivation

Carbon therapy facilities (Energy ~400 MeV/u)

• Synchrotrons:

- HIT (Heidelberg, Germany), $E_f = 430 \text{ MeV/u}$, $L_{max}(+injector) \approx 40 \text{m}$
- CNAO (Pavia, Italy), $E_f = 400 \text{ MeV/u}$, L_{max} (+injector) $\approx 24 \text{m}$
- HIMM (IMP, China), E_f =400 MeV/u , L_{max} (+injector) \approx 27m

• ...

- Cyclotrons:
 - C400 (IBA-JINR), $E_f = 400 \text{ MeV/u}, L_{max} \approx 7 \text{m}$

• FFAG:

- Pamela (Oxford, UK), E_f =400 MeV/u, L_{max} (+injector) \approx 25m
- FFAG (NIRS, Japan), E_f =400 MeV/u , $L_{max} \approx 23m$

SSC (PSI, Switzerland), 450 MeV/u ~12 m SC coils 450 MeV/nucl. C6+ H-Magnets 3-4 T 600 kV cavity single gap) 31 250 MeV/nucl. C6+ $H_2^+ \alpha$

Acceleration complex ($^{12}C^{6+}$, 400 MeV/u.)

Parameter of the booster	Value
Ion type	$^{12}C^{6+}$
Number of sectors	6
RF frequency	73.56 MHz
RF mode	6
RF system	3×200 kV
Average magnetic field: injection/extraction	1.64 T/2.11 T
Maximal magnetic field: injection/extraction	4.22 T/6.40 T
Injection energy	70 MeV/u
Extraction energy	400 MeV/u
Injection radius	143 cm
Extraction radius	278 cm
Air gap between sectors	88-135 mm
Dimensions: diameter × height	$8 \text{ m} \times 2.2 \text{ m}$
Total weight (sectors + coils)	310 t

Cyclotron-injector (B_0 =2.4 T, Weight 90 t, E_f =70 MeV/u, Ions ¹²C⁶⁺, H_2^+) & Booster

Sector magnet parameters:

yoke (1) length ×width×height: 3.1×2.0×2.2 m

weight 50 t, coil (2) engineering current density 62 A/mm^2 , coil cross section $170 \times 330 \text{ mm}^2$, axial angle between upper and lower coils 8 degrees. The pole (3) and pole tip (4) have axial profile.

Magnetic field value: Center: -1.1 T; Hill: 7 T; Valley: -1.3 T; Yoke: -2.7 T; Coil: 7.2 T.

Average magnetic field, sector field and flutter

8

Betatron frequencies (by tracing)

Tune diagram

Magnetic dipoles of injection system

Beam envelopes during injection

Distance, m

It's needed to have very good beam from injector (ϵx , $\epsilon z \le 2 \pi \cdot mm \cdot mrad$, dE $\le 0.1\%$)

Beam emittances at the final radius $(E_{average} = 405 \text{ MeV/u})$

Summary

- Design of the main cyclotron magnet and its injection system was attempted
 - 3D programs for magnetic fields calculation and particle tracing were used
- As an injector, a SC compact cyclotron can be used
 - Such the machine is feasible, and there are examples of the operating cyclotrons (Varian 250 MeV, the same magnetic rigidity)
- Beam dynamics was studied
 - Beam transmission from injection entrance to the final radius was 85% (particles losses on the ESD septum)

Notes & Plans

- Some critical points of this project:
 - High coil current density of the main magnet (62 A/mm² with field value 7.2 T in the coil)
 - Difficult assembly of the magnetic dipoles of the injection system (high coil current density & few space for cryostat)
 - Strict requirements for the beam quality from injector ($\epsilon x, \epsilon z \le 2 \pi \cdot mm \cdot mrad, dE \le 0.2\%$)
- Next steps:
 - Accelerating system design
 - Extraction system development
 - Coil forces analysis
 - Cyclotron-injector design
 - Study of the resonances crossing

Thank you for your attention...