

ACCELERATION OF POLARIZED DEUTERON BEAMS WITH RIBF CYCLOTRONS

N. Sakamoto, N. Fukunishi, M. Kase, K. Suda RIKEN Nishina Center, Wako, Japan K. Sekiguchi Tohoku University, Sendai, Japan

DELIVERED BEAMS AT RIBF

1. INTRODUCTION 2. POLARIZED ION SOURCE AND CYCLOTRONS

3. BEAM TUNING -SINGLE-TURN OPERATION-

SUMMARY

Beams: Wide Mass Range from deuteron to uranium Primary Beam Energy < 345 MeV/u High Beam Current 1 particle $\mu A(c.w.)$

RARF since 1986

RILAC2

RILAC

RRC

1. Introduction

RILAC since 1981

RRC since 1986

RIBF since 2006

SRC

Beams: Wide Mass Range from deuteron to uranium **Primary Beam Energy** < 345 MeV/u High Beam Current 1 particle μ A(c.w.)

RARF since 1986

RILAC2

RILAC

RRC

1. Introduction

SRC(K2600

RC(K98

RILAC since 1981

RRC since 1986

RIBF since 2006

SRC

Beams: Wide Mass Range from deuteron to uranium Primary Beam Energy < 345 MeV/u High Beam Current 1 particle $\mu A(c.w.)$

RILAC2 (-2012) Kr,Xe, U

AVF (K70) d, α , C, N, O, C, Ar

RIL C2

RILAC

RRC

1. Introduction

RILAC α , Ca, Zn

RILAC since 1981

SRC

RRC since 1986

Beams: 230, 250, 294, 345 MeV/u 180 300 MeV/u 160 ¹⁴N, ¹²C 250 MeV/u RILAC

190, 250, 300 MeV/u d

fRC

RILAC2

Injector: AVF Cyclotron AVF (K70) d, α, C, N, O, C, Ar

13/SEP/2016

RRC

1. Introduction

RILAC since 1981

SRC

RRC since 1986

Physics experiments requiring high precision with polarized deuteron beams have been performed.

Deuteron-Proton Scattering at RIKEN RIBF

Good probe to study the dynamical aspects of 3NFs.

Direct Comparison between Theory and Experiment

Extract information of 3NFs

✓ Momentum & Spin dependence ✓ Iso-spin dependence : only T=1/2

Cross Section and Spin Observables $rac{d\sigma}{d\Omega}, iT_{11}, T_{20}, T_{22}, T_{21}$

> NN (CDBonn, AV18, Nijm I,II) TM'(99) 3NF + NN(CD Bonn, AV18, Nijm I,II) Urbana IX 3NF+AV18

 10^{-2}

0

 10^{1}

10⁰

 10^{-1}

60

Spin observables of dp elastic scattering have measured at RIBF with deuteron energies of 190, 250, 300 MeV/u

13/SEP/2016

RIKEN POLARIZED ION SOURCE

The RIKEN atomic-beam-type polarized ion source (PIS) is a copy of one developed at TUNL*, modified at IUCF**.

*T.B.Clegg,AIPConf.Proc.187(1989)p1227. **V .P. Derenchuk et al., AIP Conf. Proc. 343(1995)p72.

1. Dissociation

D2 gas is dissociated, cooled by cold nozzle and formed into atomic beam.

2.Selection of electron spin

Electron spin of deuterium atoms is selected by

3. RF Transition

RF transition apparatus flips the deuteron spins using Stern-Gerlach separation magnets.

4. Ionization

Spin-selected deuterium atoms are ionized by the 2.45 GHz ECR ionizer.

Beam intensity 30 µA (< 100 µA), Polarization 80%

5. Spin-rotation

The orientation of the deuteron spin can be tilted and rotated to any direction by **Wien filter.**

SPECIFICATION OF MAGNETS OF CYCLOTRONS

13/SEP/2016	Cyc
Rinj/Rext	Inflector/0.712
Maximum Magnetic Field	1.7 T
Sector Angle	50 deg.
Number of Sectors	4(spiral)
K-number(MeV)	70

SPECIFICATION OF RF SYSTEM OF CYCLOTRONS

RF Resonators	2 (Double gap)
Dee Angle	85
Frequency	12-24 MHz
Harmonic Number	2
Operation Frequency	f _{rf}

1.Injection (Main radial probe) 2. Tuning of isochronous field (Phase probe) Tuning of RF voltage and phase 3.Centering acceleration 4. Betatron oscillation control 5.Extraction

Tuning (RRC)

13/SEP/2016

Cyclotrons16@Zürich

3. Beam Tuning

10/16

PSW3

4 acceleration cavity 4 acceleration cavity+FT

1500.0mm

11/16

11/16

Single-Turn Extraction: Beam bunches are extracted passing through EDC with a certain turn number N of orbital motion.

3. Beam Tuning

Single-Turn Extraction: Beam bunches are extracted passing through EDC with a certain turn number N of orbital motion.

3. Beam Tuning

Single-Turn Extraction:

c) Extracted beams partly advanced by 1 turn

3. Beam Tuning

Beam bunches are extracted passing through EDC with a certain turn number N of orbital motion.

► N-1

 $2T_0$

-Dt

$2 \times T_0$:Advance

 $N \times 2T_0$

Single-Turn Extraction: Beam bunches are extracted passing through EDC with a certain turn number N of orbital motion. Tuning is made by observing chopped bunch time structure of the extracted beams. Single-turn can be confirmed by observing the second bunch from the tail and top bunch. a) Chopped beams before injection $T_0 = 2\pi/f_{\text{beam}}$ N-2 H=2 N-Chopped bunches by a fast electrostatic chopper EDC $2 \times T_0$:Delay b) Extracted beam bunch partly delayed by 1 turn 2xT₀ delayed H=2 N+1 c) Extracted beams partly advanced by 1 turn 2xTo advanced **N-2** $2 \times T_0$:Advance N-1 EDC → N-1

13/SEP/2016

3. Beam Tuning

Single-Turn (AVF)

Single-Turn Extraction:

Beam bunches are extracted passing through EDC with a certain turn number N of orbital motion. Tuning is made by observing chopped bunch time structure of the extracted beams. Single-turn can be confirmed by observing the second bunch from the tail and top bunch.

13/SEP/2016

a) Chopped beams before injection *Rise time of the chopper: 15 ns

Chopped bunches by a fast electrostatic chopper

b) Extracted beam bunch partly delayed by 1 turn

2xT₀ delayed

c) Extracted beams partly advanced by 1 turn

2xTo advanced

Single-Turn (RRC, SRC)

There is no bunch at adjacent turn.

13/SEP/2016

3. Beam Tuning

13/SEP/2016

3. Beam Tuning

Single-Turn (SRC)

Single-Turn (SRC)				
<i>E</i> d (MeV/u)	190	250	300	
f _{beam} (MHz)	12.3	13.7	14.5	
<i>V_{acc}</i> (kV/turn)	1403	1482	1461	
ΔR _{ext} (mm)	7.6	5.5	4.3	
Mixed rate	< 0.1%	< 0.5%	< 0.1%	
10^{6} 10^{5} 10^{4} $1\% = 10^{3}$ 10^{3} $0.1\% = 10^{2}$ 10^{1}	May_{2013}	$\begin{array}{c} \text{Apricos}\\ 10^4 \\ 10^3 \\ 10^2 \\ 0 \\ 10^1 \\ 10^0 \\ 10^{-1} \\ 0 \\ 250 \\ 500 \\ 750 \\ 1000 \\ 1250 \\ 1500 \\ \text{TDC}_p \ [channel] \end{array}$	0^{6} 0^{5} 0^{4} 0^{9} 0^{2} 0^{1} 0^{2} 0	

3. Beam Tuning

Obtained turn purity was >> 99%.(=satisfy the requirement!)

Versatility of primary beams is one of the advantages of RIBF. physics experiments requiring high precision. Since <u>spin rotation was made prior to the acceleration</u> by cyclotrons: Spin control is realized by very compact system. (Pro) **Single-turn monitor system** measured their purity of extracted turns instantly. stable enough to perform the experiments.

13/SEP/2016

SUMMARY

- **D** Polarized deuteron beams with energies of 190, 250, 300 MeV/u have been provided to

 - Single -turn extraction operation is crucial for all the cyclotrons of AVF, RRC, SRC. (Con)
- Single-turn operation was feasible for these series of experiments even with an energy of
 - <u>190 MeV/u which was below the lower limit of the designed magnetic field of the SRC.</u>
- The purity of the single-turn was satisfactory (>>99%) and the accelerators were

THANK YOU FOR YOUR ATTENTION

ELECTROSTATIC BEAM CHOPPER DRIBEN BY FAST SWICH

Two trans-coupled type.

Voltage: 0-500 V (DC) Repetition rate <1 MHz Rise time 15 ns Duration time 100-250 ns.

N. Inabe et al., RIKEN Accel. Prog. Rep. 28(1995)p160.

Single-Turn Monitor (SRC)

13/SEP/2016

3. Single-Turn Extraction

