

The ION-12SC Compact Superconducting Cyclotron for Production of Medical Isotopes

Xiaoyu Wu, Ph.D. Senior Physicist Ionetix Corporation Lansing, Michigan USA

OUTLINE

- Scientific and physics design, beam dynamics simulations for Ion-12SC have been discussed previously
 - V. Smirnov, S. Vorozhtsov, J. Vincent, "Design study of an ultra-compact superconducting cyclotron for isotope production", Nuclear Instruments and Methods in Physics Research A 763 (2014) pp. 6-12
- Engineering
- Manufacturing
- Accelerator system hardware
- Beam commissioning
- Experience at the 1st customer site

POSITRON EMISSION TOMOGRAPHY (PET)

PET imaging is an effective, non-invasive and painless diagnostic commonly used in oncology, cardiology and neurology diagnostics

- Radioisotope injected into patient
- PET scanner detects gamma rays produced by radioisotope as it decays
- Scanner measures amount of metabolic activity at the site in the body and translates signals into images
- Provides information about function and metabolism of body's organs (unlike CT or MRI)

Image Source: ABC News and PET Solutions

STRONG DEMAND FOR SHORT LIVED PET RADIOISOTOPES

TWO MAJOR MARKETS

Emerging Markets (China/India)

¹⁸F-FDG for oncology

- Demand will be driven by aging demographics, rising incidence of disease and increase in scanner installations
- Estimate oncology market opportunity by 2020: >\$1.5 billion

United States/Europe/Japan

³N-ammonia for cardiology

- Demand will be driven by aging demographics, unstable supply of SPECT radiopharmaceuticals and superior imaging
- Estimated cardiac market opportunity by 2020: >\$3 billion¹

4

THE SOLUTION: ION-12SC SUPERCONDUCTING CYCLOTRON

The ION-12SC is based on proprietary superconducting cyclotron technology

- Significantly smaller size, lighter weight and lower cost than conventional cyclotrons
- Lower power consumption and require less radiation shielding
- Significantly shorter installation time and simpler operations
- Compact size/weight allows for placement in hospital or clinic without special infrastructure.
- True dose-on-demand medical isotope production system

5

ION-12SC COLLABORATORS

Ionetix Corporation, USA	J. Vincent, Ph.D.* G. Blosser* G. Horner* K. Stevens N. Usher* X. Wu, Ph.D.*
JINR, Dubna, Russia	S. Vorozhtsov, D. Sc. V. Smirnov, Ph.D.
Superconducting Systems Incorporated, USA	Prototype SC Magnet Engineering, Construction, & Development.
Tesla Engineering LTD, UK	Relocatable SC Magnet Design and Manufacturing
Technalogix Inc., Canada	Solid State RF Amplifier
* Formally worked at National Superconducting Cyclotron Laboratory (NSCL),	

Michigan State University. Experienced in R&D for K500, K1200, CCP, K100,

K250, and K250S superconducting cyclotrons.

ION-12SC CYCLOTRON MAIN PARAMETERS

Parameter	Value
Cyclotron type	Compact, Isochronous
Accelerated particle	Proton
Injection type	Internal PIG source
Magnet type	Superconducting
Central magnetic field	4.5 Tesla
Final beam energy	12.5 MeV
Max. Beam Intensity	~25 uA

SIGNIFICANT REDUCTION IN SIZE AND WEIGHT

Parameter	Value
Final acceleration radius	115 mm
Target position radius	141 mm
Cyclotron diameter	884 mm
Cyclotron height	1955 mm
Magnet weight	~2041 kg
Cyclotron weight	~2268 kg

COMPARISON WITH EXISTING SYSTEMS

	Ionetix ION-12SC	Siemens Eclipse	GE PETtrace
Room Requirements	12' x 11'2"	22' x 26'	15' x 18'
Cyclotron Weight	2.3 tons	11 tons	22 tons
Shielding	Minimal	39 tons additional shielding	47 tons additional shielding
Price	~\$1.5mn (no special infrastructure required)	\$2.5mn (plus >\$7.5M infrastructure costs)	\$2.5mn (plus >\$7.5M infrastructure costs)
Staff Required	1	2-5	2-5
Power Requirement	34 kW	35 kW	70 kW

9

INTEGRATED ACCELERATOR SYSTEM

PLANNED IONETIX ISOTOPE PRODUCTION FACILITY, SARASOTA, FLORIDA (VAULT NEEDED FOR F18 PRODUCTION)

BETA UNIT INSTALLATION AT UM JANUARY 2016

BETA UNIT INSTALLATION AT UM JANUARY 2016

BETA UNIT INSTALLATION AT UM JANUARY 2016

ION-12SC ACCELERATOR SYSTEM

- Superconducting magnet
- RF system
- Ion source
- Internal target and beam probe
- Controls & Instrumentation

ION-12SC MAGNET SYSTEM

ION-12SC WARM BORE SECTORS, ION SOURCE, AND RF SYSTEM

IONETIX CORPORATION ONE FERRY BUILDING, SUITE 255 SAN FRANCISCO, CA 94111

WARM BORE SECTOR

ION-12SC TESLA MAGNET: MAGNETIC FIELD

ION-12SC RF SYSTEM

RF resonator

Parameter	Value
Drive Power	<6 kW
Nominal Impedance	50 Ohms
VSWR	<1.5
Tuning Range	66 -69 MHz
Water Cooling	4 GPM

ION-12SC RF SYSTEM

RF Combiner

ION-12SC ION SOURCE

Parameter	Value
Ion Source Type	Cold cathode
Cathode Material	Tungsten
Chimney Diameter	2 .0 mm
Slit Opening	2.0x0.5 mm 30 degree bevel
Current	0.1 - 15 mA
Voltage	0.6 - 1.6 kV
Gas Flow	0.1 – 1.0 sccm
Lifetime	>400 hours

ION-12SC INTERNAL TARGET AND BEAM PROBE

Parameter	Value
Target Type	Internal
Target Position	141 mm
Target Volume	3.0 ml
Target window	Aluminum (Graphene under development)
Probe Range	46 - 151 mm
Intensity Probe Head	Carbon
Energy Probe Head	Borosilicate Glass

ION-12SC CONTROLS & INSTRUMENTATION

Standard 19" electronics rack

- RF amplifiers
- RF combiner
- RF controller (based on PLC and PCB)
- Magnet power supply
- Ion source power supply
- Cryogenics control
- Cooling water control

ION-12SC OPERATION EXPERIENCE

- Engineering prototype unit: July 2015 September 2015
 - Ready to be shipped to MIT Nuclear Physics Department
- Manufacture unit #1: December 2015 January 2016
 - Installed at the University of Michigan
- Manufacture unit #2: June 2016 Now
 - The "Golden Master" of the Ionetix R&D facility

ION-12SC OPERATION EXPERIENCE – DEE VOLTAGE

ION-12SC OPERATION EXPERIENCE – BEAM INTENSITY

Operation Conditions

Magnet Current	129.2 A
Magnet Lateral Adjustment	0.619 mm
Magnet Vertical Adjustment	0.0 mm
Puller Gap	1.5 mm
Source Offset	2.0 mm
Source Gas	0.6 sccm
Source Aperture	0.635 mm x 2 mm with 30 degree bevel
RF Frequency	67.123 MHz
Dee Voltage	17.0 KV Peak

IONETIX CORPORATION ONE FERRY BUILDING, SUITE 255 SAN FRANCISCO, CA 94111

ION-12SC OPERATION EXPERIENCE – BEAM SPOT & ENERGY

Measured beam stopping distance Total thickness: 0.848 mm Borosilicate Glass Beam Energy: ~ 12.1 MeV SRIM calculation Slides 1 - 5 = 0.728 mm, 5.5 - 6 = 0.120 mm Beam spot radial width: ~ 12 mm

Distance from target end, mm

SUMMARY

- R&D and commissioning for the ION-12SC superconducting cyclotron for medical isotope production have been successfully completed
- ION-12SC have significant advantages over existing machines
 - Size and weight
 - Cost
 - Power consumption and shielding
 - Installation and operations
- Mass production at lonetix soon to satisfy expected world demand.

THANK YOU

For more information please contact:

Xiaoyu Wu, Ph.D. Senior Physicist Engineering & New Product Development Ionetix Corporation

517.252.4069 ext. 809 xwu@ionetix.com

