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• Cyclotrons cover a broad spectrum of applications 
• 1200 cyclotrons for nuclear medicine and isotope production 
• 150 commercial cyclotrons 
• 80 cyclotrons for individual applications mostly to generate secondary 

particles at high intensities (neutrons, muons, neutrinos...) 
 

• High power machines consume large amounts of electrical energy  
• Scientists want even better flux, rate, brightness, luminosity... 
• Even more power is needed 
 Energy efficiency becomes a critical aspect 
 
 
 
 
 
 
 
 

TRIUMF 520 MeV protons RIKEN K2600 cyclotron PSI 590 MeV Ring Texas A&M TAMU H2
+ DAEdALUS 



Proton Driver Efficiency Workshop 
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"This aspect is seen more and more critical in the public society and in funding 
agencies. New projects and operating facilities must focus on improving the energy 
efficiency with a higher priority."  
 

Proton Driver Efficiency Workshop at PSI 

• Physics demands 

• Efficiency of different acc. concepts 

• Targets, RF, ... 

• Conventional Systems 
http://indico.psi.ch/event/Proton.Driver.Efficiency.Workshop 
http://www.psi.ch/enefficient 

Idea: comprehensive approach that covers the entire power chain from 

 grid to user 

 

Goal: Assess the state of the art and development for each stage. 

 Determine R&D recommendations in each field. 

  
M. Seidel, Pdriver'16 

Provides networking 

http://indico.psi.ch/event/Proton.Driver.Efficiency.Workshop
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COMET 250 MeV 

Medical Cyclotron  

direct beam application 

200 kW from public grid 

1 mA for patient treatment (250 W beam power)  
efficiency ≈ 0.13% (Pbeam/Pgrid) 

PSI 590 MeV cyclotron  

secondary radiation 

10 MW from public grid 

1.4 MW beam power (2.4 mA) 

efficiency 14% 

running costs for electricity: ≈ 100 ksFr/year 
(cost efficient... I think...) 

running costs for electricity: 5 MsFr/year 
(cost efficiency hard to determine... for me) 

The energy efficiency is not a primary parameter, it is determined and limited by 
• The applications of the accelerator 
• The accelerator parameter range 

 
⇒ The efficiency of accelerators can only be compared for the same application and 
⇒ for the same basic parameters 
 
 
 

m+: 5·108s-1 @ 30 MeV/c 
per beamline ≈ 300 µW 
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The energy efficiency is specifically important within the context of  

Accelerator Driven Systems (e.g. power generation with a Thorium reactor) 

      

Pbeam 

10 MW 

energy 

producing 

unit 

Electrical energy 

converter 
efficiency hel ≈ 45% 

output 

accelerator 
efficiency hacc 

Pth 

G0,k 

P
in

 

Electric conversion efficiency 

𝑃𝑒𝑙  = 𝜂𝑒𝑙 × 𝑃𝑡ℎ 
𝑃𝐺𝑅𝐼𝐷 

𝑃𝑏𝑒𝑎𝑚 = 𝜂𝑎𝑐𝑐 × 𝑃𝑖𝑛 

𝑃𝑡ℎ = 𝑃𝑏𝑒𝑎𝑚×
𝐺0𝑘

1−𝑘
 

Running the accelerator 

Energy gain in core 

𝑃𝐺𝑅𝐼𝐷  = 𝑃𝑒𝑙 − 𝑃𝑖𝑛 =𝑃𝑏𝑒𝑎𝑚
𝜂𝑒𝑙𝐺0𝑘

1−𝑘
−
1

𝜂𝑎𝑐𝑐
 

Electric power to 

run the accelerator 

Power produced 

by the reactor 

For a typical "Rubbia ADS*" ≈ 50 ⇒ 𝜂𝑎𝑐𝑐  ≫ 0.02 (breakeven, 0.2 desired) 

Jean-Pierre Revol, pDriver-Workshop 2016 
*C. Rubbia et al, CERN/AT/95-44 (ET) 

G0: gain proportionality factor ≈2.4 

k:  fission driven coefficient ≈ 0.98 



High Intensity Proton Accelerator Facility 
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Ring Cyclotron: 590 MeV 

1.4 MW beam power (2.4 mA) 

186 turns 

8 sector magnets 

 



Overall Efficiency 
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Total power consumption:  10 MW 

Beam Power:  1.4 MW 

Efficiency:  14% 

Just the accelerator: 18%   (8 MW) 

 

energy label 

A+ 
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RF Systems 
4.1 MW 

Magnets 

 2.6 MW 

aux. Systems 

Instruments 

 3.3 MW 

Beam on  
m -targets  

1.4 MW 

heat  to river, to air 
Cryogenics 

only vacuum 

n: 1013s-1@ 10 eV  

per beamline ≈ 20 µW 

m+: 5·108s-1 @ 30 MeV/c 

per beamline ≈ 300 µW 

Normal conducting 

Beam on  
spallation target 

0.8 MW 



Superconducting magnets 

• Lower energy consumption 

Potential Optimizations for Cyclotrons 
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K = 2600 MeV 

• 350/400 MeV per nucleon 

• 6 superconducting sector magnets 

• 8 Tm bending power (3.8 T) 

• 4 RF resonators 

• RF frequency 18-38 MHz 

• Injection and extraction elements 

• 19 m diameter 

• 8 m height 

• 8300 t total weight 

650 kW for magnets/cryogenics 

 

15 MW total power consumption 
Hiroki Okuno priv. comm. 

RIKEN Superconducting Ring Cyclotron 

Utilization: 

Acceleration of a broad spectrum of ions up to Uranium 
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RF Systems 
4.1 MW 

Magnets 

 2.6 MW 

aux. Systems 

Instruments 

 3.3 MW 

Beam on  
m -targets  

1.4 MW 

heat  to river, to air 
Cryogenics: 

only vacuum 

n: 1013s-1@ 10 eV  

per beamline ≈ 20 µW 

m+: 5·108s-1 @ 30 MeV/c 

per beamline ≈ 300 µW 

Beam on  
spallation target 

0.86 MW 



Cooling Circuit Efficiency 
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Connected wattage 2 MW 

• Cooling power primary circuit  7 MW 

• Cooling power secondary circuit  3 MW 

 

 

Office 

 

heating 

 

Operating load:  

• Primary circuit    0.3 MW 

• Secondary circuit  0.25 MW 

 

Overall efficiency:   94% 

Improvement: 

• Energy recovery 

• 3360 MWh recovered in 2015 
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RF Systems 
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 3.3 MW 

Beam on  
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1.4 MW 

heat  to river, to air 
Cryogenics: 

only vacuum 

n: 1013s-1@ 10 eV  

per beamline ≈ 20 µW 

m+: 5·108s-1 @ 30 MeV/c 

per beamline ≈ 300 µW 

Beam on  
spallation target 

0.8 MW 



hydraulic tuning devices (5x) 

Inside the resonator 
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Efficiency of the RF System 

• Transfer of up to 400 kW power to the beam per  cavity 
• f = 50.6 MHz 

• Umax = 1.2 MV/p (0.85 MV/p at present) 

• Q = 4.8104 

 



4-stage power amplifier chain with power Tetrode Tubes 

Amplifier Chain for one Copper Cavity 
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RF-Modulators 

& Controls 

20 W Amplifier 
P.A. P.A. P.A. P.A. 

Harmonic-f 

Absorber 

Harmonic-f 

Absorber 

Harmonic-f 

Absorber 

1 kW 10 kW 100 kW 1 MW 

cavity 

Ref. values 

Control & Interlocks 

Wall plug to beam efficiency: 

• AC to DC:  90% 

• DC to RF: 64% 

• RF to beam:  55% 

• All over:  32% 

 

M. Schneider, PSI 



Cyclotron Cavities 
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Al-Cavity Cu-Cavity 

Frequency 50.6 MHz 50.6 MHz 

Voltage 750 kVp >1 MVp 

Dissipated 
Power 

300 kW 500 kW 

Q-value 28‘000 48‘000 

Bandwidth 1.8 kHz 1 kHz 

Tuning Range 240 kHz 560 kHz 

Al-cavity Cu-cavity 

Efficiency was not really the reason 

for replacing the cavities 



History of the Beam Power at PSI 
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160 turns 

Ucav = 1 MV/p 

Losses scale with 

 

• (turn separation at the extraction)-1   N  

• Charge density in the cyclotron   N 

• Acceleration time    N 

W. Joho 



Grid to Beam Power Conversion 

Page 17 

1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0

20.0

20.5

21.0

21.5

P
S

I t
ot

al
 p

ow
er

beam current (mA)

dP/dI = 0.806 MW/mA

Efficiency: 14% 

Efficiency apparently scales with beam power 
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3.0 mA: efficiency = 24% 

With 

secondary 

beamlines 

Without 

secondary 

beamlines 

2.2 mA: efficiency = 18% 

14% with secondary beamlines 

Cavity voltage was 

kept constant! 

Ucav = 850 kV/p 
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160 turns 

Ucav = 1 MV 

Imax ~ V3 

Losses scale with 

 

• (turn separation at the extraction)-1   N  

• Charge density in the cyclotron   N 

• Acceleration time    N 

W. Joho 
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Al-cavity Cu-cavity 

Ohmic losses: 
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Current setup: 

2.4 mA, Uacc= 850 kV, 186 turns  

ηacc ≈ 0.18 

High power upgrade: 

3.0 mA, Uacc= 1 MV, 160 turns  

ηacc ≈ 0.2 

10 MW beam: 

17 mA, Uacc= 1.3 MV, 96 turns  

ηacc ≈ 0.3 

2.0 mA  

Uacc= 780 kV 

202 turns  

ηacc ≈ 0.16 



Cyclotron Cavities 
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Al-cavity Cu-cavity 

Ohmic losses: 

R
V
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to improve the efficiency for a 

given gap voltage the shunt 

impedance R must be optimized 
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Depends only on geometry! 
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 𝑈𝑖 = 𝑉𝑎𝑐𝑐

𝑛

𝑖=1

 

 
n = number of cavities 
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1929: E.O. Lawrence, Berkley 

ion source 

beam 

drift tubes drift tubes 

+ + - - 

+Ekin +Ekin 

- - - - - - - - 

≈ 
 

RF source 

inspired by Rolf Widerøe 
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1929: E.O. Lawrence, Berkley 

ion source 

beam 

drift tubes drift tubes 

+ + - - 

+Ekin +Ekin 

- - - - - - - - 

≈ 
 

RF source 

inspired by Rolf Widerøe 

 

Talk by Mike Seidel 

FRB01: Cyclotrons and Superconducting Linacs as High 

Intensity Driver Accelerators 
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160 turns 

Ucav = 1 MV 

Losses scale with 

 

• (turn separation at the extraction)-1   N  

• Charge density in the cyclotron   N 

• Acceleration time    N 

W. Joho 
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• variation of accelerating voltage over the bunch length increases energy spread 

• thus a third harmonic flattop resonator is used to compensate the curvature of the 

resonator voltage w.r.t. time 

• optimum condition: 𝑈tot = 𝑈0(cos𝜔𝑡 −
1

9
cos 3𝜔𝑡)  

PSI:  

f = 150 MHZ 

Up = 550 kV 
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• variation of accelerating voltage over the bunch length increases energy spread 

• thus a third harmonic flattop resonator is used to compensate the curvature of the 

resonator voltage w.r.t. time 

• optimum condition: 𝑈tot = 𝑈0(cos𝜔𝑡 −
1

9
cos 3𝜔𝑡)  

PSI:  

f = 150 MHZ 

Up = 550 kV 

For 3 mA we need 1 MV/p per cavity 

and thus 650 kV/p for the flattop cavity 



Limited to 550 keV 

• New cavity (design) 

• New RF-amplifiers 

150 MHz Flattop Cavity 

Page 28 



Availability and Efficiency 
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Availability has an impact on the efficiency. Especially if systems 

are running without beam! 
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2014 
(86%) 

2015 
(95%) 

causes 

t < 5 min 
 
t < 30 min 
 
t > 30 min 

≈ 141 h 
  
≈ 42 h 
 
≈ 408 h 

≈ 64 h 
  
≈ 30 h 
 
≈ 180 h 
 

mostly discharges 
 
control system, RF, operation 
 
targets, infrastructure, magnets, ... 

Duration of outages 

Power needed without beam (8.5 MW): 

4.1 MW for RF     -> can be switched off  (for t > 2h) 

2.6 MW for all magnets     -> main magnets are usually not switched off 

1.8 MW for beamline magnets   -> can be switched off (250 magnets) 

 



Power Saving at PSI 
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SINQ 

UCN 

IW2 

IP2 PK1/2 

Cockcroft-

Walton 

Inj. 2 

Ring 



Sleep at PSI 
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Similar to a Start-Stop system in cars 

A. Kovach, A. Parfenova, Operations PSI 

System for Lucrative Energy Economization in Proton accelerators https://www.pinterest.com/ 



Sleep at PSI 
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Similar to a Start-Stop system in cars 

A. Kovach, A. Parfenova, Operations PSI 

SINQ Shutdown 

since 25.6.2016 

System for Lucrative Energy Economization in Proton accelerators https://www.pinterest.com/ 



• Cyclotrons represent one of the most efficient accelerator type 

 Energy and cost efficient (compact, multiple use of the acceleration voltage) 

 Operational parameters have a strong impact on the efficiency (pulsed, CW, ...) 

 RF dominates the efficiency 

 Increasing the beam power "apparently" increases the energy efficiency 

 Could meet ADS requirements  

 Existing facilities could reach 25% already, ADS desires 20-40% 

 low loss extraction possible  

 Up to now, no machine has been designed for maximum energy efficiency 

 

 

 

 

Conclusions 
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Don't forget costs, feasibility, and reliability 

Improvements (specific for each design): 

• Machine design (more cavities, no injector?) 

• SC-magnets, permanent magnets, magnet cooling 

• Optimize grid to RF power conversion 

- cavity design 

- DC-RF: klystrons (90% C. Lingwood et al), solid state (55%)  

               magnetrons claim 85% (B. Chase, pdriver'16) 

• Conventional systems (buildings, cryo systems, heat recovery, energy management) 

• Targets, neutron guides, moderators, treatment facilities... 
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first cyclotron: 

1931, Berkeley 

1 kV gap voltage 

80 keV protons 

25$ total cost 
 

Thank you for your Attention 
Lawrence & Livingston 

27 inch cyclotron 
 

Powerfull concept: 

 Simplicity 

 CW operation 

 Multiple usage of 
accelerating voltage 

Two capacitive electrodes (Dees) 
two gaps per turn 

Internal ion source 

Homogeneous B field 

Constant revolution time 
for low energies  (g ≈ 1) 
 




