

Joachim Grillenberger :: High Intensity Proton Accelerator :: Paul Scherrer Institute

The Energy Efficiency of Cyclotrons

21st International Conference on Cyclotrons and their Applications

- Cyclotrons cover a broad spectrum of applications
 - 1200 cyclotrons for nuclear medicine and isotope production
 - 150 commercial cyclotrons
 - 80 cyclotrons for individual applications mostly to generate secondary particles at high intensities (neutrons, muons, neutrinos...)
- High power machines consume large amounts of electrical energy
- Scientists want even better flux, rate, brightness, luminosity...
- Even more power is needed
- Energy efficiency becomes a critical aspect

Proton Driver Efficiency Workshop

"This aspect is seen more and more critical in the public society and in funding agencies. New projects and operating facilities must focus on improving the energy efficiency with a higher priority."

Proton Driver Efficiency Workshop at PSI

- Physics demands
- Efficiency of different acc. concepts
- Targets, RF, ...
- Conventional Systems

http://indico.psi.ch/event/Proton.Driver.Efficiency.Workshop http://www.psi.ch/enefficient

Idea: comprehensive approach that covers the entire power chain from grid to user

Goal:Assess the state of the art and development for each stage.Determine R&D recommendations in each field.

M. Seidel, Pdriver'16

Efficiency of Cyclotrons

COMET 250 MeV Medical Cyclotron

PSI 590 MeV cyclotron

direct beam application 200 kW from public grid 1 μ A for patient treatment (250 W beam power) efficiency $\approx 0.13\% (P_{beam}/P_{grid})$ running costs for electricity: $\approx 100 \text{ ksFr/year}$

(cost efficient... I think...)

secondary radiation

10 MW from public grid

1.4 MW beam power (2.4 mA)

efficiency 14%

running costs for electricity: 5 MsFr/year

(cost efficiency hard to determine... for me)

The energy efficiency is not a primary parameter, it is determined and limited by

- The applications of the accelerator
- The accelerator parameter range

⇒ The efficiency of accelerators can only be compared for the same application and for the same basic parameters

 μ^+ : 5·10⁸s⁻¹ @ 30 MeV/c per beamline \approx 300 μ W

The energy efficiency is specifically important within the context of **Accelerator Driven Systems** (e.g. power generation with a Thorium reactor)

For a typical "Rubbia ADS^{*}" $\approx 50 \Rightarrow \eta_{acc} \gg 0.02$ (breakeven, 0.2 desired)

Jean-Pierre Revol, pDriver-Workshop 2016 *C. Rubbia et al, CERN/AT/95-44 (ET)

High Intensity Proton Accelerator Facility

Overall Efficiency

Total power consumption:10 MWBeam Power:1.4 MWEfficiency:14%Just the accelerator:18% (8 MW)

Grid to Beam Power

Potential Optimizations for Cyclotrons

RIKEN Superconducting Ring Cyclotron

Superconducting magnets

• Lower energy consumption

K = 2600 MeV

- 350/400 MeV per nucleon
- 6 superconducting sector magnets
- 8 Tm bending power (3.8 T)
- 4 RF resonators
- RF frequency 18-38 MHz
- Injection and extraction elements
- 19 m diameter
- 8 m height
- 8300 t total weight

650 kW for magnets/cryogenics

15 MW total power consumption Hiroki Okuno priv. comm.

Utilization:

Acceleration of a broad spectrum of ions up to Uranium

Grid to Beam Power

Cooling Circuit Efficiency

Connected wattage 2 MW

- Cooling power primary circuit 7 MW
- Cooling power secondary circuit 3 MW

Operating load:

- 0.3 MW Primary circuit
- Secondary circuit 0.25 MW

Overall efficiency:

94%

Improvement:

- Energy recovery •
- 3360 MWh recovered in 2015 •

Grid to Beam Power

Efficiency of the RF System

- Transfer of up to 400 kW power to the beam per cavity
- f = 50.6 MHz
- U_{max} = 1.2 MV/p (0.85 MV/p at present)
- $Q = 4.8 \cdot 10^4$

Amplifier Chain for one Copper Cavity

4-stage power amplifier chain with power Tetrode Tubes

Control & Interlocks

Wall plug to beam efficiency:

- AC to DC: 90%
- DC to RF: 64%
- RF to beam: 55%
- All over: 32%

M. Schneider, PSI

Cyclotron Cavities

	Al-Cavity	Cu-Cavity
Frequency	50.6 MHz	50.6 MHz
Voltage	750 kV _p	>1 MV _p
Dissipated Power	300 kW	500 kW
Q-value	28'000	48'000
Bandwidth	1.8 kHz	1 kHz
Tuning Range	240 kHz	560 kHz

Efficiency was not really the reason for replacing the cavities

History of the Beam Power at PSI

Losses scale with• (turn separation at the extraction)⁻¹∝ N• Charge density in the cyclotron∞ N• Acceleration time∞ N

Page 16

Grid to Beam Power Conversion

History of the Beam Power at PSI

Losses scale with• (turn separation at the extraction)⁻1∝ N• Charge density in the cyclotron∝ N• Acceleration time∝ N

Page 19

Ohmic losses:

Efficiency and Beam Power

$$\eta_{acc} = \frac{P_{beam}}{P_{loss} + P_{beam} / \eta_{RF} + P_{aux}}$$

$$P_{beam} = I_{\max} E_{kin} / q$$

$$I_{\max} \approx \frac{1}{n^3} \qquad \qquad I_{\max} = \frac{cV_{acc}^3}{E_{kin}^3 / q^3}$$

$$V_{acc} = E_{kin} / q \cdot \sqrt[3]{I_{max} / c} \qquad P_{loss} = \frac{\left| V_{acc} \right|^2}{2 \cdot R}$$

$$\eta_{acc} = \frac{I \cdot E_{kin} / q}{\frac{(I / c)^{\frac{2}{3}} \cdot E_{kin}^{2}}{2 \cdot R \cdot q^{2}} + I \cdot E_{kin} / (q \cdot \eta_{RF}) + P_{aux}}$$

Cyclotron Cavities

→ to improve the efficiency for a given gap voltage the shunt impedance *R* must be optimized

$$\frac{R}{Q} = \frac{\left|V_{acc}\right|^2}{4\pi fW} = \sqrt{\frac{L}{C}}$$

→ Depends only on geometry!

1929: E.O. Lawrence, Berkley

RF source

1929: E.O. Lawrence, Berkley

inspired by Rolf Widerøe

Talk by Mike Seidel FRB01: Cyclotrons and Superconducting Linacs as High Intensity Driver Accelerators

History of the Beam Power at PSI

Losses scale with• (turn separation at the extraction)⁻1∝ N• Charge density in the cyclotron∝ N• Acceleration time∝ N

- variation of accelerating voltage over the bunch length increases energy spread
- thus a third harmonic flattop resonator is used to **compensate the curvature** of the resonator voltage w.r.t. time
- optimum condition: $U_{\text{tot}} = U_0(\cos \omega t \frac{1}{9}\cos 3\omega t)$

- variation of accelerating voltage over the bunch length increases energy spread
- thus a third harmonic flattop resonator is used to **compensate the curvature** of the resonator voltage w.r.t. time
- optimum condition: $U_{\text{tot}} = U_0(\cos \omega t \frac{1}{9}\cos 3\omega t)$

150 MHz Flattop Cavity

Limited to 550 keV

- New cavity (design)
- New RF-amplifiers

Availability and Efficiency

Availability has an impact on the efficiency. Especially if systems are running without beam!

Power Saving at PSI

Duration of outages

	2014 (86%)	2015 (95%)	causes
t < 5 min	≈ 141 h	≈ 64 h	mostly discharges
t < 30 min	≈ 42 h	≈ 30 h	control system, RF, operation
t > 30 min	≈ 408 h	≈ 180 h	targets, infrastructure, magnets,

Power needed without beam (8.5 MW):

4.1 MW for RF

-> can be switched off (for t > 2h)

2.6 MW for all magnets

- -> main magnets are usually not switched off
- 1.8 MW for beamline magnets -> can be switched off (250 magnets)

Power Saving at PSI

System for Lucrative Energy Economization in Proton accelerators

💈 ZSLP_main.ui _ 🗆 X							
SLEEP							
Beamline	Status	Beam Current	In	Standby for	Currently Saved	Saved This Year	Control Switch Notifications
🚰 IW2	ON	1701.1 µA	0 d	0h 0m 0s	0.0000 MWh	41.11 MWh	STANDBY ON
🚰 IP2	STANDBY	0.0 µA	11 d	5h41m26s	12.8289 MWh	124.22 MWh	STANDBY ON
PK1	ON	1699.8 µA	0 d	0h 0m 0s	0.0000 MWh	76.30 MWh	STANDBY ON
🚰 РК2	ON	1699.0 µA	0 d	0h 0m 0s	0.0000 MWh	70.35 MWh	STANDBY ON
🚰 SINQ	STANDBY	0.0 µA	85 d	9h12m43s	912.7686 MWh	244.19 MWh	STANDBY ON
UCN	ON	0.0 µA	0 d	0h0m0s	0.0000 MWh	75.72 MWh	STANDBY ON
Total Power	1.229MW				Total Savings	631.9MWh	DEBUG Maintenance

A. Kovach, A. Parfenova, Operations PSI

Similar to a Start-Stop system in cars

System for Lucrative Energy Economization in Proton accelerators

ZSLP_main.ui _ 🗆 X							
SLEEP							
Beamline	Status	Beam Current	In Standby for	Currently Saved	Saved This Year	Control Switch Notifications	
IW2	ON	1701.1 µ/	SINQ Shutdowr	0.0000 MWh	41.11 MWh	STANDBY ON	
🚰 IP2	STANDBY	0.0 µ/	since 25.6.2016	12.8289 MWh	124.22 MWh	STANDBY ON	
РК1	ON	1699.8 µA	0d 0h 0m 0s		76.30 MWh	STANDBY ON	
🚰 РК2	ON	1699.0 µA	0d0h0m0s	0.0000 MWh	70.35 MWh	STANDBY ON	
SINQ	STANDBY	0.0 µA	85d 9h12m43s	912.7686 MWh	244.19 MWh	TANDBY ON	
UCN	ON	0.0 µA	0d 0h 0m 0s	0.0000 MWh	75.72 Mwh	STANDBY ON	
Total Power	1.229MW			Total Savings	631.9MWh	DEBUG Maintenance	

A. Kovach, A. Parfenova, Operations PSI

Similar to a Start-Stop system in cars

- Cyclotrons represent one of the most efficient accelerator type
 - Energy and cost efficient (compact, multiple use of the acceleration voltage)
 - Operational parameters have a strong impact on the efficiency (pulsed, CW, ...)
 - RF dominates the efficiency
 - Increasing the beam power "apparently" increases the energy efficiency
 - Could meet ADS requirements
 - Existing facilities could reach 25% already, ADS desires 20-40%
 - low loss extraction possible

- Up to now, no machine has been designed for maximum energy efficiency

Improvements (specific for each design):

- Machine design (more cavities, no injector?)
- SC-magnets, permanent magnets, magnet cooling
- Optimize grid to RF power conversion
 - cavity design
 - DC-RF: klystrons (90% C. Lingwood et al), solid state (55%) magnetrons claim 85% (B. Chase, pdriver'16)
- Conventional systems (buildings, cryo systems, heat recovery, energy management)
- Targets, neutron guides, moderators, treatment facilities...

Don't forget costs, feasibility, and reliability

Thank you for your Attention

beam

Two capacitive electrodes (Dees) two gaps per turn

Internal ion source

Homogeneous B field

Constant revolution time for low energies $(\gamma \approx 1)$

Powerfull concept:

- ✓ Simplicity
- ✓ CW operation
- ✓ Multiple usage of accelerating voltage