Author: Solhju, R.
Paper Title Page
MOP03 Developed Numerical Code Based on the Effects of Space Charge in Central Region of 10 MeV Cyclotron 49
 
  • M. Afkhami Karaei, H. Afarideh, S. Azizpourian, M. Mousavinia, R. Solhju, F. Taft
    AUT, Tehran, Iran
  • J.-S. Chai, M. Ghergherehchi
    SKKU, Suwon, Republic of Korea
 
  To study of space charge effects in 10 MeV cyclotron of Amirkabir University of Technology the C++ code is developed. This cyclotron is designed to accelerate H up to 10MeV energy. The important components of cyclotron that effect on calculations of space charge include four sector magnets, 2 RF cavities with 71MHz frequency and internal PIG ion source. Equations of motion and effects of charged particles in electromagnetic field of accelerator are integrated in C++ code. The conventional method, 4-order Runge-Kutta, is used to solve the equations. The results of calculations show space charge effects of beam particles on each other in accelerating process.  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THD02 Heat Transfer Studies of the IRANCYC-10 Magnet and its Effects on the Isochronous Magnetic Field 380
 
  • S. Sabounchi, H. Afarideh, R. Solhju, F. Zakerhosseini
    AUT, Tehran, Iran
  • M. Ghergherehchi
    SKKU, Suwon, Republic of Korea
 
  In magnets for cyclotron, one of the prominent problems is difference between simulation and feasible operations. By considering more factors in simulation these differ-ence can be reduced. Thermal effect and heat transfer is one phenomenon which can change favourite features of the magnets. IRANCYC-10 is a compact AVF cyclotron which is in manufacturing phase at AmirKabir University of Technology. In IRANCYC-10 heat transfer studies have been done for RF cavity, RF transmission line and PIG ion source. In this paper, accurate simulation of heat transfer and magnetic field have been done. Also thermal effects on isochronous magnetic field for IRAN-CYC-10 is investigated. For heat transfer and CFD simu-lations, Ansys CFX and for magnetic simulation Opera 3D Tosca have been used. The initiate magnet ampere-turn in simulation is 45201 and water mass flow rate for magnet system is considered 53 lit/min.  
slides icon Slides THD02 [6.831 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)