Author: Osswald, F.R.
Paper Title Page
TUP26 Axial Injection Channel of IPHC Cyclotron TR24 and Possibility of Ion Beam Bunching 224
 
  • N.Yu. Kazarinov, I.A. Ivanenko
    JINR, Dubna, Moscow Region, Russia
  • F.R. Osswald
    IPHC, Strasbourg Cedex 2, France
 
  The CYRCé cyclotron (CYclotron pour la ReCherche et l'Enseignement) is used at IPHC (Institut Pluridisciplinaire Hubert Curien) for the production of radio-isotopes for diagnostics and medical treatments. The TR24 cyclotron produced and commercialized by ACSI (Canada) delivers a 16-25 MeV proton beam with intensity from few nA up to 500 microA. The bunching of the H ion beam by means of multi harmonic buncher is considered in this report. The buncher may be installed in the axial injection beam line of the cyclotron. The using of the greed-less multi harmonic buncher will give opportunity to new proton beam applications and to increase the accelerated beam current. The main parameters of the sinusoidal (one-harmonic) and multi harmonic bunchers are evaluated.  
poster icon Poster TUP26 [0.210 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THP24 Design of a Beamline from CYRCé for Radiobiological Experiments 359
 
  • E. Bouquerel, T. Adams, G. Heitz, C. Maazouzi, C. Matthieu, F.R. Osswald, M. Pellicioli, M. Rousseau, C. Ruescas, J. Schuler, E.K. Traykov
    IPHC, Strasbourg Cedex 2, France
 
  Funding: The project is supported by the Contrat de Projet Etat-Région (CPER) Alsace Champagne-Ardenne Lorraine 2015-2020.
The PRECy project (Platform for Radiobiological Experiments from CYRCé) foresees the use of a 16-25 MeV energy proton beam produced by the recently installed TR24 cyclotron at the Institut Pluridisciplinaire Hubert Curien (IPHC) of Strasbourg for biological tissues irradiation. The second exit port of the cyclotron will be used for this application along with a combination magnet. The platform will consist of up to 3 or 5 experimental stations linked to beamlines in a dedicated 15x13m area next to the cyclotron vault. One of the beamlines will receive proton beams of a few cm diameter at intensities up to 100 nA. The status of the design of the first beam line is presented. The characterization of the proton beam parameters has been performed using the quad scan method. TraceWin and COSY Infinity codes allowed simulating the beam envelopes and defining the electromagnetic equipment that will compose the beamline.
 
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)