Author: De Villiers, J.G.
Paper Title Page
MOP10 Numerical Orbit Tracking in 3D Through the Injector Cyclotron for Heavy Ions at iThemba LABS 71
 
  • J.G. De Villiers, J.I. Broodryk, J.L. Conradie, F. Nemulodi, R.W. Thomae
    iThemba LABS, Somerset West, South Africa
  • J.J. Yang, T.J. Zhang
    CIAE, Beijing, People's Republic of China
 
  Funding: Jointly supported by the National Research Foundation of South Africa (No. 92793) and National Science Foundation of China (No. 11461141003).
The RF and magnetic fields of the injector cyclotron (SPC2) were modelled in 3D with finite element methods, using OPERA-3d, in an effort to determine the cause of the relative poor beam transmission through the machine in the 8-turn mode. Simulation of the particle motion in SPC2 was done using machine operational parameters for acceleration of 20Ne3+. The isochronous magnetic field is calculated from a complete cyclotron magnet model and the electrostatic field distribution from a dee electrode model, using TOSCA. The modelling of the high frequency resonance conditions of the resonators with SOPRANO-EV provided the relative variation of the electric field profiles in the acceleration gaps. A command line program was developed to combine the information of the three models and implement time-dependent control of the electrostatic fields during the particle tracking. In addition, based on calculated data from OPERA-3D, the parallel particle-in-cell code OPAL-CYCL was used to calculate a particle orbit for comparison with OPERA-3d. The models, methods and calculated results will be presented.
 
poster icon Poster MOP10 [2.178 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOP11 Injection Line Studies for the SPC2 Cyclotron at iThemba LABS 75
 
  • F. Nemulodi, J.I. Broodryk, J.L. Conradie, J.G. De Villiers, W. Duckitt, D.T. Fourie, J. Mira, R.W. Thomae, M.J. Van Niekerk
    iThemba LABS, Somerset West, South Africa
  • J.J. Yang, T.J. Zhang
    CIAE, Beijing, People's Republic of China
 
  The transmission efficiency of some ion beams through the second solid-pole injector cyclotron (SPC2) at iThemba LABS requires improvement. In order to understand the beam optics in the injection line, and match the beam to the acceptance of the cyclotron, the beam envelope behaviour from the beginning of injection-line to the inside of the SPC2 cyclotron was investigated with different simulation programs. The transverse effects were taken into account by the beam transport codes TRANSOPTR and TRANSPORT, while the multi particle simulation code OPAL was used to include space-charge effects. Simulations of the effect of an additional buncher, operating at the second harmonic, on the transmission of the beam of charged particles through the cyclotron were made.  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THA02 New Developments at iThemba LABS 274
 
  • J.L. Conradie, L.S. Anthony, S. Baard, R.A. Bark, A.H. Barnard, J.I. Broodryk, J.C. Cornell, J.G. De Villiers, H. Du Plessis, W. Duckitt, D.T. Fourie, P.G. Gardiner, M.E. Hogan, I.H. Kohler, C. Lussi, R.H. McAlister, J. Mira, H.W. Mostert, F. Nemulodi, G. Pfeiffer, M. Sakildien, G.F. Steyn, N. Stodart, R.W. Thomae, M.J. Van Niekerk, P.A. van Schalkwyk
    iThemba LABS, Somerset West, South Africa
  • A. Andrighetto, A. Monetti, G.P. Prete, M. Rossignoli
    INFN/LNL, Legnaro (PD), Italy
 
  iThemba LABS has been in operation for more than 30 years and is now at a stage at which refurbishment and ' in some cases ' replacement of the infrastructure and critical components is required. The replacement and refurbish-ment of the cooling system, which include the cooling tow-ers and chillers, the 4.4-MVA uninterruptable power sup-ply batteries and other critical components, are discussed. Progress with a facility for low-energy radioactive ion beams will be reported on. A proposal to remove radioiso-tope production from the separated sector cyclotron (SSC) and the production of the future radioisotopes with a com-mercial 70-MeV cyclotron to make more beam time avail-able for nuclear physics research with the SSC will also be discussed. Developments on our electron cyclotron reso-nance ion sources, the PIG ion source and low-level digital RF control system have also been carried out. Good pro-gress with integration of the existing control system to an EPICS control system has been made. The adoption of EtherCAT as our new industrial communication standard has enabled integration with much off-the-shelf motion, actuator and general interface hardware.  
slides icon Slides THA02 [4.138 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)