AD/ELENA electron cooling experience during and after CERNs Long Shutdown (LS2)

COOL2021 – Novosibirsk/virtual - 03/11/2021 D. Gamba

D. Gamba*, L. Bojtar, C. Carli, B. Dupuy, A. Frassier, L. V. Joergensen, L. Ponce, G. Tranquille

- Introduction
- Status of AD/ELENA cycles after restart in 2021
- Optimization tools and highlight observations of e-cooling
- Work in progress

* davide.gamba@cern.ch

AD/ELENA – introduction

Typical AD cycle in 2021

- Slightly longer cycle than in 2018 (but still being optimized)
- Using h=1 for the whole cycle (h=3 for $300 \rightarrow 100 \text{ MeV/c}$ ramp pre-LS2)
- Using bunched-beam cooling before extraction (was bunch rotation pre-LS2)
- Most losses still during injection plateau and on 300 → 100 MeV/c ramp
 - \Box 2 GeV/c \rightarrow 300 MeV/c also "touchy" in terms of transmission stability

Typical ELENA cycle in 2021

- Beam intensity estimated by LLRF system (only when beam is bunched)
 - □ (not very accurate as it does not take into account bunch length)
- Running with two (magnetically-equal) ~15 second-long cycles:
 - □ **pbar** (repetition rate limited by AD to about **one shot every 2 minutes**)
 - □ H⁻ with beam generated by local source at 100 keV kinetic energy
 - 2nd injection during 100 keV e-cooling to better mimic pbar-intensities at extraction

COOL2021 – Novosibirsk/virtual - 03/11/2021

How we got there (focus on e-cooling) - tools used -

AD/ELENA E-Coolers

	A	D	ELENA		
(Main) Ion particle	pbar	pbar	Pbar/H⁻	pbar/H⁻	
Ion momentum	300 MeV/c	100 MeV/c	35 MeV/c	13.7 MeV/c	
Electron kinetic energy	25.5 keV 2.9 keV (<35 keV)		355 eV 55 eV		
Relativistic beta	0.305	0.106	0.037	0.015	
Electron current	2.5 A	100 mA	5 mA	1 mA	
Cooling length	1.5	m	1 m		
Ring length	182.4	43 m	30.41 m		
Gun magnetic field	590) G	Up to 1 kG		
Drift magnet field	590) G	100 G		
Electron beam radius (drift)	25 r	nm	8 to 25 mm		

COOL2021 - Novosibirsk/virtual - 03/11/2021

Main AD instrumentation: BCCC and Schottky

Beam Cryogenic Current comparator (CCC)

- □ beam intensity all along the cycle (also un-bunched)
 - Extremely useful was to have "live" acquisition of "losses"
- \Box only a few days downtime in 2021
- Schottky
 - Downmixed to around 50 kHz on all cooling plateaus
 - □ gives a real time information on cooling efficiency

Schottky in ELENA

- Schottky signal (with cooling) by combining several BPMs
 - \Box See O. Marqversen and S. Jensen at IBIC2021 <u>WEPP04</u>

To be compared with the little signal seen using standard spectrum analyzer with a single BPM sum signal

COOL2021 - Novosibirsk/virtual - 03/11/2021

1 157 000.0 Hz

9.2427 Sec -79.121 dBm

Transverse emittance measurements

- Only actually available system to measure transverse beam profiles
- Similar system (different hardware) for both AD and ELENA
- Destructive measurement
 - □ Any optimization is a **very lengthy process**! (AD cycle \sim 120 seconds)

Single shot optics measurement

ELENA transfer lines are **equipped** with **multi-wire profile monitors** (SEM)

- SEM are semi-interceptive device (about 10% beam loss per SEM)
- By combining the information of several SEM one can perform a multi-screen beam Twiss parameter measurement in a single beam shot

pbar/e⁻ orbit matching

- All **CERN cooler** have **two BPMs** in the **cooling drift solenoid** that "see" both ions and e⁻ beams.
 - **One needs to induce an e⁻ beam intensity modulation** in order to see a signal with those BPMs
 - **Tests performed** in ELENA in **2019**, and this **system** put **in operation** on all CERN e-coolers **during LS2**

- Using BPM acquisition system for both generating e⁻ excitation and signal processing
 - □ **it allowed to integrate this new tool with standard orbit correction tools** (e.g. YASP steering program widely used at CERN)

Special thanks to A. Frassier and B. Galante

COOL2021 – Novosibirsk/virtual - 03/11/2021

How we got there (focus on e-cooling) - observations highlight -

Example: setup of e-cooling at 300 MeV/c

- 1. Using **e-/pbar orbit** reading to **match offset/angle** (within a few mm)
- 2. Watch Schottky for adjusting electron energy
- 3. Using scraper measurements while scanning pbar angle in the e-cooler
 - **Some doubts** on the **scraper accuracy** and/or **interpretation** of the data
 - **Note:** scraper data give "half beam profile" assuming no Dispersion at cooler.

Note: longitudinal beam profile

Initial observation of "sharp low-energy edge" in Schottky profile cured with pbar orbit offset in the e-cooler.

- Simulations shows that this could be due to e⁻ spacecharge effects (see also poster P1005 on Friday)
- Presently, running with sharp edge visible in the Schottky, i.e. with pbar beam centered in e⁻ beam
 It seems like it give better stability, but difficult to judge

Bunched beam cooling at 100 MeV/c

Longitudinal Schottky measurement

- Initially found beneficial to keep the beam bunched on 100 MeV/c
 plateau and therefore implement
 bunched beam cooling
 - Main drawbacks: Schottky is
 blinded by bunch structure, i.e.
 difficult to spot drift of e⁻ energy
- Optimization of transverse cooling mainly watching profiles in AD-ELENA transfer lines and confirmed by scraper measurements
 - Long tails visible in scraper
 measurement, but not evident
 elsewhere: are they real?

COOL2021 – Novosibirsk/virtual - 03/11/2021

Coasting + bunched beam cooling at 100 MeV/c

Moved back to coasting beam during physics run while keepking about 2 slong bunched beam cooling to improve ELENA injection efficiency

- Observed sudden/slow e⁻ energy drifts up to 0.5%, only(?) at 100 MeV/c
 - □ Linked to vacuum activity (10⁻¹¹ → 10⁻⁹) generated by nearby bunch rotation cavities and/or stochastic cooling cryogenic pickups

ELENA: H⁻e-cooling at 13.7 MeV/c

■ Easy to see effect of e⁻ current on longitudinal cooling speed

Effect of H⁻/e⁻ orbit alignment

Cooling of pbars at 35 and 13.7 MeV/c

- Preliminary check of longitudinal cooling force with respect to expectations
 - □ (using **RF-Track** see poster P1005 by A. Borucka on Friday)

COOL2021 - Novosibirsk/virtual - 03/11/2021

Transverse cooling at 35 MeV/c

- Scraper of pbars at different times during cooling plateau
 - □ **Transverse cooling visible** in both planes
 - **Quickly** getting into **equilibrium** (after about 1 second)
 - □ Accuracy of the measurement still to be investigated
 - Acquisition/interpretation with H⁻ even more difficult

COOL2021 – Novosibirsk/virtual - 03/11/2021

What we are working on

COOL2021 - Novosibirsk/virtual - 03/11/2021

User beam optimisations

Possible to obtain smaller emittance (at the expenses of higher longitudinal one) playing with **length of bunched beam cooling** before extraction in **ELENA**

- Also possible to obtain **smaller emittance** working on **e- H- alignment.**
- So far this was **not possible to reproduce with pbars**:
 - Intensity dependance?

Emittance intensity dependence?

- Measuring beam size at a single SEM in ELENA transfer line over one day
 - □ Profiting of intrinsic instability of H⁻ source to span wide range of extracted intensity
 - □ Clear beam size-intensity dependence: to be investigated!
 - □ No striking difference between H⁻ and pbars (but intensity)
 - We can use H⁻ to optimize and study cooling in ELENA!

IPM: a first raw acquisition

- AD equipped with Ionization Profile Monitor (IPM)
 - Typically not used because requires injecting gas in the ring
- "double MCP" installed to allow measurements without gas injection
 - □ Here one of the very first acquisition of H and V profiles all along the cycle
 - □ Some cooling effect observed, but accuracy of the instrument still to be understood

• No gas injection; $\beta_{H/V}$ about 10 m; spacing between MCP wires of 1 mm

A New E-Cooler for AD

- **Time to retire the oldest e-cooler at CERN** (with critical spare situation)
 - **Design** of a new e-cooler **ongoing**. **Installation** planned for \sim **2025**.
- **Profit** to of **this unique opportunity** to:
 - □ increase maximum energy (from 300 MeV/c to 500 MeV/c, i.e. from 27 to 68 keV e-)
 - □ improve cooling performance by implying a better magnetic system and gun/collector
 - B_T/B_L from 1e-3 to 1e-4; e⁻ expansion; 4x higher I_e at 100 MeV/c; 4x better vacuum

See paper P2004 by G. Tranquille on Friday!

Summary

- AD and ELENA have been successfully re-commissioned
 - □ New era for antimatter physics: 100 keV pbar beams delivered to all experiments
- E-cooling with pbars in AD was setup with no major issues
 - □ No major hardware intervention done during LS2
 - Introduction of e- (and pbar) orbit reading was useful to quickly find cooling and guide the orbit overlap optimization
 - Availability of live (during the cycle!) Schottky and Intensity measurement was instrumental (note: only about 700 pbar shot/day)
 - Scraper measurement are lengthy and of difficult interpretation
 - Investigating on having the AD IPM back in operation
- ELENA profited of extensive preparation with H⁻
 - **E-cooling of H-** was observed with **no degradation of lifetime**
 - □ **No evident differences** in **cooling performance** between **H**⁻ and **pbars**
 - (but lower H⁻ beam intensity and, consequently?, lower equilibrium emittances)
- E-cooling performance characterization and comparison with latest simulation tools started, but still a lot of work to be done.

Thanks for your attention and to the many colleagues who contributed!

COOL2021 - Novosibirsk/virtual - 03/11/2021

Extracted pbar beams parameters

(at start of physics run in Aug 2021; design values from ELENA Design Report)

AD transmission stability

- Transmission in AD over one weekend (about 3.4e7 pbars injected)
 - □ S-cooling-related losses mainly on **injection plateau** (limited SC acceptance)
 - \square Possible to have very little losses between 2 GeV/c (SC) and 300 MeV/c (EC)
 - □ E-cooling-related "transmission efficiency" comparable to s-cooling one, but:
 - Not considering here ELENA! heavily affected by e-cooling at 100 MeV/c!
 - E-cooling is typically the most sensitive to drifts (here probably vacuum activity)

Cooling of H⁻: transverse

 Horizontal and vertical scraper measurements before bunching without/with eusing Bruno's acquisition and analysis application

COOL2021 - Novosibirsk/virtual - 03/11/2021

On dispersive e-cooling:

Interplay between ions dispersion, Twiss functions and
 e- distribution (e- space charge! - might be linked to vacuum)

IPM: zoom in on S-cooling plateaus

Clear effect of s-cooling at 3.5 GeV/c

IPM: different voltage settings

Note that voltages are not yet "optimal": beam size depends on MCP settings...

Some (little) history/references

■ 1996: Design Study of the Antiproton Decelerator: AD - S. A. Baird et al. - <u>link</u>

 \Box Main description of the AD at time of design.

	STOCHASTIC COOLING				ELECTRON COOLING						
p [GeV/c]	ε _i [π mr	ε _f n·rad]	Δp/p _i [%	Δp/p _f 6]	t [s]		ε _i [π mr	ε _f n∙rad]	Δp/p _i [%	Δp/p _f %]	t [s]
3.5	200	5	1.5	0.1	20						
2.0	9	5	0.18	0.03	15						
0.3	33	10	0.2	0.1	20		33	2	0.2	0.1	6
0.1	30	7	0.3	0.1	40		6	1	0.3	0.01	1
0.1 bunched	_	_	-	-	÷		6	1	0.3	0.1	1

2001: Optics for the Antiproton Decelerator at CERN - P. Beloshitsky et al. - <u>link</u>

- □ Main reference about the AD optics, with detailed explanations of why and what
- 2004: The CERN antiproton decelerator (AD) in 2002 [...] P. Belochitskii et al. <u>link</u>
 - □ Successful tests for better cooling by adding dispersion in cooler on 300 MeV/c
 - □ No mention about those ideas later, maybe too unstable or difficult to operate?!
- 2007: Status of the Antiproton Decelerator [...] P. Belochitskii <u>link</u>

Table 1. Performance	of stochastic	cooling system
	of stochastic	cooming system

 Table 3: Performance of electron cooling

			0.	_
Momentum, GeV/c	3.57		2.0	
Duration, sec	17	6		
$\epsilon_{\rm x}$ / $\epsilon_{\rm y}$, π mm mrad	3 / 3		4 / 5	
Δp/p	1.10-3		2· 10 ⁻⁴	

Momentum, MeV/c	300	100
Duration, sec	16	15
$\varepsilon_x/\varepsilon_y, \ \pi \ mm \ mrad$	1.6 / 2.4	<0.5 / <0.5
$\Delta p/p$	8·10 ⁻⁵	1.2· 10 ⁻⁴

AD cycle at the end of 2018

D but it looks mainly due to stochastic cooling and deceleration ramp lengths

• Two optics, mainly to improve dynamic aperture (Q_x : 5.385 \rightarrow 5.45 Q_y : 5.37 \rightarrow 5.42)

COOL2021 – Novosibirsk/virtual - 03/11/2021

Other possible hardware improvements

- Proposal by Pavel (see <u>AD e-cooler cons. review</u>)
- Two main reasons:
 - Minimize coupling: e-cooler solenoid effect immediately compensated by closer compensating solenoids
 - Promise for an easier optics, possibly with bigger acceptance
 - Actual gain could be investigated in simulations
 - □ Increase orbit correction strength for e⁻/pbar orbit alignment
 - Partially, already proposed in 2002 <u>CERN-PS-2002-046-OP</u>
 - Stated several times to be the **main limitation for cooling optimization**
 - Impact of orbit excursion in solenoids to be investigated
 - With an "horizontal" cooler, this problem needs to be re-addressed: in the present scenario, we will "miss" one horizontal corrector.

Possible optics improvement

- Proposal by Pavel (see <u>AD e-cooler cons. review</u>)
 - □ Based on experience from 2002-2004 (link) ?
- No need for hardware changes
- Keep the same working point (Qx: 5.45; Qy: 5.42), but:
 - □ lower betas ($\beta_{x,y}$ = 5.5 m / 3.2 m instead of $\beta_{x,y}$ = 8.7 m / 4.1m),
 - \square non zero dispersion D_x =-0.75m instead of 0.15 m
 - Promise for faster cooler and smaller final emittances emittances

Question: how does optics affect cooling?

- **Dependence** of cooling performance and optics functions is **not trivial**
- Studies in the past have shown some dependence, but always explanation not always clear/reproducible

E.g.: trying to match past experience in LEAR with Betacool/RF-Track simulations :

Some references:

- □ 1999: Optimum dispersion for e-cooling (LEAR) [CERN-PS-99-045-OP]
- □ 2003: Dispersive electron cooling experiments at TSR <u>link</u>

ELENA Ion Source Status

Always suffered of reliability issues

- □ Main issue: **HV insulation transformer** breakdown
- □ Now running with a **new design** in **pulsed mode**
 - $\sim 60 \text{kV}$ to 100 kV in about 1 second before each beam

Still open issues:

- 1. H⁻ intra-pulse intensity instability
 - Two possible, but not optimal, workaround found

2. Suffering from beam position drift over time:

