ELENA COMMISSIONING

D. Gamba* on behalf of the AD/ELENA collaboration

COOL2019 - 25th Sep 2019

- From AD to ELENA: an **overview**
- Status of H⁻, pbar, electron cooler commissioning
- First beam extracted to experiments (GBAR)
- Current Activities and Plans for CERN Long Shutdown 2 (LS2)

AD – a unique facility providing 5.3 MeV antiprotons

- ~1.5 10¹³ protons (26 GeV) on target
- ~3.5 10⁷ antiprotons captured in AD
 - \square Acceptances 200 μ m ϵ_G and $\pm 3 \times 10^{-2}$
- **Deceleration** to the lowest energy 5.3 MeV reachable "safely" (limited by field quality)
- Beam cooling
 - \square **Stochastic** 3.57 and 2.0 GeV/c
 - \square **Electron** 0.3 and 0.1 GeV/c
- ~3 10⁷ antiprotons **extracted** per cycle
 - $\sim 70\%$ within <1 μ m ϵ_G tails up to 10 μ m ϵ_G
 - \Box 95% within 10⁻⁴ δp/p and **400 ns** (before bunch rotation)
- Vacuum pressure: ~10⁻¹⁰ mbar
- Cycle length ~100 s

Sketch of the "present" AD circumference 182 m

First ELENA proposal

- Since Villars (Aug 2004) the SPSC has supported the implementation of the ELENA decelerator ring for AD
 - □ **Pbar deceleration down to 100 keV** to increase plar trapping efficiency
 - ☐ (First ideas for such a ring for LEAR were proposed in 1982 CM-P00059041)
- CERN Research Board approved construction in June 2011

Why ELENA?

= Extra Low ENergy Antiproton ring

- To be able to capture antiprotons in penning traps, most experiments use degrader foils to further decelerate the 5.3 MeV antiprotons coming from AD to a few keV.
- Energy straggling increases energy spread such that **only a few antiprotons can be** captured (< 1%); even with optimized foil thickness
 - □ Almost half of the incoming phars are stopped in foil, where they annihilate
 - ☐ Almost half of the incoming phars are too energetic to be trapped
- ASACUSA decelerates antiprotons with an RFQ
 - □ they achieved about **one order of magnitude higher trapping efficiencies**
- ELENA will provide 100 keV antiprotons (over 4 bunches => serving 4 experiments)
 - ☐ Expected two order of magnitude higher trapping efficiency
- Other requirements from experiments:
 - □ Beam size on foil small enough (rms size <1 mm); full bunch length less than <300 ns

ELENA Ring – 2018 Electron Extraction to GBAR cooler HE Injection kicker Wideband and septum RF cavity C = 30.4 mBp/R down to 94 G Extraction to AD experiments

ELENA Injection/Extraction

H⁻ (or p): from Source to Ring

Wish list:

- ~100 uA; ~1 us; ~square pulses
 - □ Only 650 ns-long pulses injectable by kicker
- Good Stability/Repeatability
 - □ order ~1% for intensity and beam shape
 - □ order \sim 0.1% better for energy
- Aim: progress as much as possible without taking precious antiprotons

Beam observations

Exploring tune diagram with H

Simulations

- Custom-made code to study tune diagram by <u>L. Bojtar</u>
 - Detailed magnetic field map of full ring
- Machine model predicts strong resonances/small portion of tune diagram "available" for beam.

Measurements

- Profiting of "fast" and "cheap" H- cycles to explore tune diagram with beam
- Here an example of measured
 "lifetime" as a function of different
 quadrupole settings at 85 keV
 - Preliminary data analysis

H- Status: a "full cycle"

- Accelerating cycle:
 - From 85 keV to 100 keV
 - From 100 keV to 5.3 MeV
 - Back to 100 keV.
- H- also used for **GBAR commissioning**
 - First experiment taking ELENA beam
- H- lifetime (~a few s) main limitation for long cycles, and/or e-cooling studies
 - Somewhat shorter than expectation from rest-gas interaction, but not too far...
- Unfortunately we had many issues with HV insulation transformer
- Only a few month operations in 2018 at 85 keV instead of nominal 100 keV
- H- only used for sub-system (e.g. RF, timing) commissioning, ELENA optics, and transfer line to GBAR experiment.

Commissioning With Phars

ELENA Decelerating Cycle

- Beam arrives already "cooled" from AD ($\epsilon_G \approx 1 \mu m$)
 - ☐ Deceleration starts "immediately".
- Two deceleration steps with cooling to compensate for adiabatic blow-up
- **Extraction of 4 bunches** ($\sigma_t \approx 75 \text{ ns}, \, \epsilon_G \approx 1 \, \mu\text{m}, \, \sigma_p = 5\text{e-4}, \, \#_{\text{pbar/bunch}} = 4.5\text{e6}$)

Injection: bunch to bucket

Injecting Antiprotons from the AD

■ Bunch to bucket transfer between AD and ELENA (~ 3.2E7 pbars) and

deceleration with phase and radial loops

Bunch transferred into ELENA waiting bucket - Phase loop damps synchrotron oscillations

First decelerating cycles: Impact and correction of injection orbit

Orbit correction in injection transfer line to match ELENA closed orbit

From B. Lefort (link)

ELENA Electron Cooler

- Design based on L-LSR e-cooler (Kyoto)
- Cooler installed beginning of December 2017
 - ☐ Unfortunately, a **vacuum leak** developed after first bake-out
- Cooler taken out for dismounting and repair at the beginning of 2019
 - ☐ ELENA restarted delayed to April 2018

e-cooler fully available in July 2018

ELENA Electron Cooler

pbar p/βrel [MeV/c]/[c]	35/0.037	13.7/0.015
e- current (mA)	5	1
B gun/drift (G)	1000/100	
Cathode radius (mm)	8	
e- beam radius (mm)	25	
Twiss parameters (m)	β_x =2.1, β_y =2.2, D_x =1.5	

Complex/flexible design with many correctors needed to achieve specifications:

$$B_{\perp}/B_{\parallel} \le 5 \times 10^{-4}$$

- ☐ Magnetic field carefully measure and corrected before installation
- Most **PC referred** to **ground**

Beam availability in 2018

- E-cooler studies (so far) only possible with *pbars* from AD
 - □ No attempt of *p* beam from source; limited attempts with H
- AD cycle length ~110 s; MD shifts of 8 h each
 - □ About 33 shots/hour; 260 shots/MD shift
 - □ Typically 2 to 3 MDs per week $\approx 10\%$ of time
 - □ Unfortunate year for AD (about 62% availability = 4400h)
 - i.e. only a few thousand shots for ELENA MDs in 2018
 - **ELENA** e-cooler fully operational only from July

17/08

16/09

18/07

5E6

16/10

18/06

19/05

Beam Instrumentation for Cooling Studies

- Scraper measurement
 - Destructive
 - ☐ **Integrated** in control system

- Schottky diagnostic (LPU or **TPU**)
 - □ Non-destructive
 - □ Not (yet) fully integrated in CO

Also available:

- 2 BPMs in e-cooler section, but only used to measure ions (no tests with e⁻ so far)
- Recombination Monitor only for e⁻ beam optimisation with H⁻ and p (not exploited)

E-cooler in action (35 MeV/c plateau)

- Clear qualitative transverse and longitudinal emittances reduction observed
- Only limited amount of time on systematic optimization of cooling (lack of time)
 - □ Some optimisation with ion orbit bumps/angles in e-cooler
 - □ **Surely(?) margin** for improvements

Some details (35 MeV/c plateau)

- □ e- beam energy drift?
- **Longit. cooling time** of the order of **1 s**
 - ☐ Momentum spread (~2.5e-4) and cooling time compatible with expectations
- Clear reduction of transverse beam size
- No sizable variation of beam mean transverse position

From J.Hunt Ph.D thesis

Transverse cooling performance

■ Analysis of scraper measurements at (only) three times along cycle

T [s]	E _k pbar [keV]	ε _{XG} [μm]	ε _{YG} [μm]
~8 (A)	650	3.6	1.6
~15 (B)	650	0.7	1.2
	Reduction to	20%	75%
~28 (C) (<u>no cool</u>)	100	2.5	2.6
~28 (C)	100	0.6	0.5
	Reduction to	24%	19%

- A few more measurement available, but scattered in time/beam condition
 - ☐ More systematic measurements to come in the next run
- No big tails seen, but detailed analysis to do.
- Obtained values here about **x2 worst than design** (0.3/0.2 μ m ϵ_G for **coasting** beam with cooling on)
 - ☐ Good enough for emittance blow-up compensation

From J.Hunt Ph.D thesis

Tune optimization

- Machine was **designed** to allow for a **broad range of tunes** (around **2.3/1.3**)
- Several tune measurements taken at different time with different optics
 - ☐ Mainly **empirical adjustments** / **trial-and-error** approach
 - ☐ The main observable for **optimization** was the **transmission** along cycle

- Finally able to control tune better than $\Delta Q < 0.02$
 - ☐ Mainly **limited by beam time** and **control system** restrictions (being solved)

Kick response matrix analysis

- **Discrepancies** between **machine model** and **measurements** have been observed
 - ☐ Discrepancy varies along magnetic cycle, pointing to possible hysteresis effects
- A possible way to investigate is via kick response matrix analysis
 - ☐ (Preliminary) Overall agreement between theoretical optics and fitted optics
 - More data and analysis needed

Status End of Run 2018

- Almost nominal cycle:
- □ Injection <u>100 MeV/c</u>
- \square Deceleration to 35 MeV/c (h = 1)
- ☐ De-bunching and **e-cooling**
- \square Deceleration to <u>13.7 MeV/c</u> (h=4)
- ☐ De-bunching and **e-cooling**
- □ Re-bunching (with e-cooler on) on h=4 and extraction to experiment
 - GBAR only user so far.
- If we trust LLRF intensity estimate we have **about 50% deceleration efficiency**
- Still quite some **losses** at the end of **second ramp**
 - □ Still to be understood...

Not far from design parameters

Connection of ELENA to AD experiments approved at the end of 2018

Bunches extracted to GBAR

■ Beam profiles in measured on **Microwire monitors** installed in **GBAR line**

Vertical

1500

500

-27-24-21-18-15-12-9-6-3 0 3 6 9 12 15 18 21 24 27

[mm]

-:0.5 / 3 mm ο: 11:16:48 Σ: 256

Gaussian fit by hand with $\sigma_H = 5 \text{ mm}$

Gaussian fit by hand with $\sigma_V = 2.5$ mm

- □ Acquisitions with second monitor <u>LNE.BSGWA.5020</u> in GBAR line
- ☐ Beam sizes with voltages of first two quads of line set to zero
 - $β_H = 6$ m gives rms emittance: $ε_H = 4.1 \mu m$ (without taking dispersion into account) (design 1.2 μm)
 - $β_V = 4$ m gives rms emittance: $ε_V = 1.5 \mu m \text{ (design 0.75 } \mu m)$

Bunches extracted to GBAR

- According to <u>Transverse Pickup</u> signals:
 - ☐ After injection 3.7e7 pbars
 - □ Before extraction 4x4.3e6 = 1.7e7 pbars
- According to <u>Magnetic Pickup</u> in extraction line we see about <u>1e7 pbars</u> extracted (over all 4 bunches)
 - ☐ Unrealistic to think we are loosing 0.7e7 pars at extraction... Probable some calibration error!

"Bunch rotation" (h=1)

Possible to shorten the bunches (but higher energy spread) with bunch rotation (not baseline) for h=1 operation (100 keV)

Jump programmed in RF Voltage

Current Activities and Plans for LS2

LS2: Electrostatic lines being installed

In the contexte of AD consolidation

Master planning of activities in the AD hall during LS (by Francois Butin who follows up all these activities) link

Some concern:

Profile monitors availability for transfer lines

- Complex design
 - ☐ **Initially** foreseen as **in-kind collaboration**, now being taken care more and more by BE-BI
- Parts coming for Japanese collaboration, assembly made at CERN by BE-BI
 - ☐ Limited documentation
 - ☐ Many issues found during assembly (vacuum leaks, mechanical problems, broken wires, poor cleaning) had to be addressed at CERN
- Slow reception of parts
 - □ Looking for "local" supplier for spare parts
- Final version of **head amplifier** being finalized
 - ☐ Also with supervision from CERN BE-BI
 - First prototypes demonstrated to work, but more beamtime needed to finalize their commissioning!

Some concern:

stray fields from experiment magnets

- From preliminary studies, transfer line design should be able to cope with static fields
 - ☐ **How to cope** with **experiments going on/off** while others are taking beam?
 - Additional **shielding** and/or **"online" orbit correction** knobs **possible**
 - □ Plan is to start sending beam to first assess the actual impact on the beam

Summary

- 2018 a very fruitful year for ELENA commissioning
 - ☐ Many sub-systems (RF, BI, e-cooler) (almost) fully commissioned
 - □ Nominal beam performance (almost) established
- **E-cooling** is doing what it has promised
 - \square Emittance reductions of ~80% (even at 100 keV)
 - ☐ Longitudinal beam specifications met with bunched beam cooling
 - \square Results obtained with limited/empirical studies \rightarrow room for improvement?!
- Could not fully profit of the H^-/p source => being fixed
 - \square Use of H⁻/p beam envisaged for e-cooling studies (higher rep rate)
- Plans for LS2
 - ☐ Installation of the ELENA transfer lines to the "old" experimental zone
 - ☐ Fix ion source and Improve its reliability and stability
 - □ Continue commissioning activities with H⁻/p in 2019/2020
 - □ Commissioning of electrostatic transfer lines in 2020 with H
 - ☐ Physics with pbars mid 2021

Thanks!

- Wolfgang Bartmann
- Pavel Belochitskii
- Lajos Bojtar
- François Butin
- Christian Carli
- Marco Calviani
- Fritz Caspers
- Bruno Dupuy

- Tommy Eriksson
- Miguel Fernandes
- Matthew Alexander Fraser
- Alexandre Frassier
- Pierre Freyermuth
- Pierre Grandemange
- Lars Varming Joergensen
- Bertrand Lefort

- Stephan Maury
- Sergio Pasinelli
- Flemming Pedersen
- Laurette Ponce
- Gerard Alain Tranquille
- ... + many other colleagues to whom I apologies!

Backup

ELENA Overview and Layout

- Longitudinal pickup in the ring too noisy: being revisited by BE/RF
- Tune measurement excitation stripline broken
 - planned to be repaired in 2019 by BE/BI (need to break vacuum)

Expected cooling time

- Putting everything together, to be expected cooling time of $\tau < 1$ s
 - □ Compatible with observations.

AD

AD e-Cooler

Some useful formulas

$$E_k = eV_K$$

$$I_e = PV_K^{\frac{3}{2}}$$

$$P = 0.58 \times 10^{-6}$$

Courtesy A. Frassier

AD cooler issues in 2018

- Leak detection performed on the electron cooler
- Leak traced to the collector cooling circuit

AD Cycle end of 2018

Not much time for looking at AD cycle in 2018:

- Hardware issues
- ELENA commissioning

Expected adiabatic emittance blow up at each

AD Cycle Evolution

- Length of different plateaus (T. Eriksson <u>link</u>)
 - \square 2000, end of the year: 2.0 10⁷ pbars/bunch, 110s cycle length
 - \square 2003, end of the year: 3.0 10⁷ pbars/bunch (routine operation value), 85s cycle length

- Major faults (T. Eriksson link):
 - 2004: >200h e-cooler downtime due to water system & collector replacement
 - 2006: Re-start after 2005 shutdown problematic due to **various machine issues**. E-cooler problems with water circuit and HV stability. 5 weeks total delay => physics start rescheduled
 - 2014: Difficult start-up: **Orbit issues** and e-cooler HV stability
 - 2018: Cathode/vacuum fault(s),

Transfer line elements

From D. Barna et al. – IPAC2014 - MOPRI101

ELENA Design – some features

Energy Range

- ☐ Machine operated at an unusually low energy for a synchrotron (down to **100 keV**!)
- ☐ Challenges mainly a consequence of the low energy

Lattice

- ☐ Geometry of ring with position and strength of magnets
- □ Constraints
 - Long straight section with small dispersion for **electron cooling**
 - Geometry in AD hall (location of injection and two extractions)
 - Acceptances, working point ...
- ☐ Hexagonal shape and optics with periodicity two
- □ Tunes : $Q_X \approx 2.3$, $Q_Y \approx 1.3$ (e.g. $Q_X = 2.23$, $Q_Y = 1.23$)
- Acceptances: about 75 μm
 (depends on working point)

- **■** Electron cooling
 - ☐ Essential ingredient of concept
 - □ Cooling at intermediate plateau to **reduce losses** and the final energy 100 keV to **provide dense bunches**
 - □ Bunched beam cooling at 100 keV to reduce momentum spread of short bunches
 - □ Perturbations of magnetic system on circulating beam difficult to assess
- Intra Beam Scattering IBS
 - □ Coulomb scattering between beam particles
 - ☐ Transfer of heat (unordered motion) between phase spaces (long. & transverse)
 - ☐ Emittance blow-up
- Characteristics of beam sent to experiments given by the equilibrium between these two effects

Intra Beam Scattering IBS – co-moving coord. system

■ Direct space charge effect

- □ Coulomb force between beam particles generate **non-linear defocusing force**
- □ Initial reason to split available intensity into 4 bunches

$$\Delta Q = -\frac{G_T r_p N_b}{2\pi \varepsilon_x \beta^2 \gamma^3} \frac{G_L C}{l_b}$$

■ Magnets with very low fields

- ☐ Low energy beam sensitive **stray fields** and magnet imperfections due to **hysteresis** & **remanence**
- ☐ "Thinning" (mixing of stainless steel and magnetic laminations) had been foreseen initially to improve
- ☐ Careful magnetic measurement with pre-series quadrupoles showed smallest remanence with conventional yoke (no thinning)
- ☐ Observation confirmed with bending magnet prototype and understood now
- ⇒Magnet thinning does NOT improve field

 quality at low fields, but rather increases remanence effects
- ⇒ELENA bending magnets, quadrupoles and sextupoles made with conventional yokes
- □ (Corrector magnets without yokes)

Prototype quadrupole to investigate magnet "thinning" on the measurement bench

- Rest gas interactions and vacuum system
 - □ 3 10⁻¹² Torr nominal pressure **fully baked machine with NEGs** wherever possible (technical problems as peel-off with NEG coating of stainless steel chambers)
 - ☐ Interactions of beam with rest gas to be evaluated with care, **not the dominant limitation**
- Beam diagnostics with very low intensities and energy
 - □ E.g.: beam currents down to well below 1 μA far beyond reach standard slow BCTs
 - Intensity of coasting beam measured with **Schottky diagnostics** (observing noise generated by coasting beam on a pick-up, special pick-ups design to limit background noise)
- Electrostatic transfer lines to experiments
 - ☐ Cost effective at very low energies
 - ☐ Many quadrupoles allow a design with small "betatron functions" and large "betatron phase advance" (small beam sizes) limiting impact from stray fields
 - ☐ Easier for shielding against magnetic stray fields
- RF system with modest voltages, but very large dynamic range (1.04 MHz 144 KHz f_{rev})
- H- and proton source (and electrostatic acceleration to 100 keV) for commissioning
 - □ Commissioning independent of AD, antiprotons kept as much as possible for experiments
 - ☐ **Higher repetition rate** but start commissioning at the difficult low energy part of the cycle
 - ☐ Still, antiprotons needed to complete ELENA ring commissioning