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COOLER SYNCHROTRON COSY 

 Circumference: 184 m 

 Polarized/unpolarized H+ and D+ 

 Energy: 45 MeV – 2700 MeV 

 Beam cooling 

• Stochastic cooling 

• 100 keV electron cooling 

• 2 MeV electron cooling 

• Build at BINP 

• Operated since 2013 
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COSY EXPERIENCE OF ELECTRON COOLING 
Summary of achievements with 2 MeV electron cooler 

Energy Current Cooling time (e-1) Conditions (initial) 

𝑬𝒌𝒊𝒏,𝒆 / keV 𝑰𝒆 / A 𝝉∥ / s 𝝉⊥ / s 𝑵𝒑𝒓𝒐𝒕𝒐𝒏𝒔 𝚫𝐩/𝐩 𝝐𝒙 ;  𝝐𝒚 / mm∙mrad 

109 0.5 50..60 

192 0.5 ≈ 20 ≈ 100 

316 0.3 ≈ 20 50..60 

908 0.8 < 40 ≈ 90 

908 0.6 20(1) 130(4) 3 ⋅ 108 76(3) ⋅ 10−5 0.282(2) ; 0.798(2) 

908 0.6 7.7(3) 88(2) 3 ⋅ 108 61(2) ⋅ 10−5 0.089(2) ; 0.122(1) 

1257 0.5 ≈ 100 

1500 0.1 — — 
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The values indicated do not represent the best possible cooling but show 
achievements considering initial conditions and available optimisation time   



The Cooler Synchrotron COSY 
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EPICS INTEGRATION OF THE 2 MEV COOLER 

 Standalone cooler control system 

 Integration into COSY control system EPICS 

(Experimental Physics and Industrial Control System) 

 All systems covered by readout 

 Central archiving 

• All data continuously stored in one place 

• Easy data analysis and correlation 

 Cooler BPM data used for orbit correction 

 Control of magnetic system and electron gun 

Implementation status 

Parameter Statistics 

Readout 1029 

Analogue parameters 610 

Set-point (DAC) 71 

Measured (ADC) 539 

Binary status 381 

Other 38 

Control 123 

Analogue (DAC) 63 

Binary status 60 
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EPICS INTEGRATION 

 2 MeV e-cooler 

 Schottky spectrum measurement 

 Ionization profile monitor (IPM) 

 100 keV e-cooler (readout only) 

 Stochastic cooling (ongoing) 

 

                             

                           

                                     

Related systems 
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EPICS INTEGRATION 

 2 MeV e-cooler 

 Schottky spectrum measurement 

 Ionization profile monitor (IPM) 

 100 keV e-cooler (readout only) 

 Stochastic cooling (ongoing) 

 

All data saved in one place 

Established EPICS toolset 

On-the-fly correlation and plotting 

Related systems 

COOL 2019 | BINP Page 7 



NEW RAMP EDITOR 

 Automated control of parameters 

 Based on COSY timing and experiments 

 Definition of arbitrary waveforms 

 For any parameter (cooler and beyond) 

 

Ramp up with minimal beam loss 

Reproducible cooling properties 

Systematic parameter scans 

 

 

 

 

For e-cooler and any EPICS based system 
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The Cooler Synchrotron COSY 

 

EPICS integration of the cooler control system 

 

EXPERIMENTS WITH COMBINED ELECTRON AND 

STOCHASTIC COOLING 
 

Electron velocity Profile 
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COMBINED ELECTRON AND STOCHASTIC COOLING 
Proton beam at 2.425 GeV/c | 908 keV electrons 

 Fast stochastic cooling at 

high emittance 

 Fast e-cooling at low 

emittance 

   18 s, Δ𝑝 𝑝 = 3 ⋅ 10−5 

 

Combine advantages of 

both systems 

3D stochastic pre-cooling 
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COMBINED ELECTRON AND STOCHASTIC COOLING 
Proton beam at 2.425 GeV/c | 908 keV electrons 

Stochastic pre-cooling: 

 Faster emittance e-cooling 

𝑇𝑐𝑜𝑜𝑙,𝑥 ≈ 125 s  70 s 

 Faster momentum e-cooling 

𝜏 ≈ 20 s  8 s 

 Lower momentum spread 

Δ𝑝 𝑝 ≈ 6 ⋅ 10−5  3 ⋅ 10−5 

 Further emittance cooling: 

factor 3 compared to SC 

 
Stochastic emittance pre-cooling 
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ELECTRON COOLING & PANDA CLUSTER-JET TARGET 
Proton beam at 2.425 GeV/c | 908 keV electrons | Target density of 1015 cm-2 | Barrier Bucket 

𝚫𝒑 𝒑 = 𝟐. 𝟏 ⋅ 𝟏𝟎−𝟒 𝚫𝒑 𝒑 = 𝟓. 𝟑 ⋅ 𝟏𝟎−𝟒 𝚫𝒑 𝒑 = 𝟏𝟏. 𝟏 ⋅ 𝟏𝟎−𝟒 
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ELECTRON COOLING & PANDA CLUSTER-JET TARGET 
Proton beam at 2.425 GeV/c | 908 keV electrons | Target density of 2⋅1014 cm-2 

𝚫𝒑 𝒑 = 𝟐. 𝟗 ⋅ 𝟏𝟎−𝟓 
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ARTEFACT IN SCHOTTKY SPECTRUM 
Simultaneous operation of stochastic and electron cooling 
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 Simultaneous transverse stochastic and 

electron cooling 

 Artefact visible in longitudinal Schottky 

spectrum 

• Measured with stochastic cooling pick-up 

• Not visible in IPM 

 

 Dependence on pick-up, cooling loop, 

electron beam energy? 

 To be addressed in next beam time 

Schottky Spectrum 
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The Cooler Synchrotron COSY 

 

EPICS integration of the cooler control system 

 

Experiments with combined electron and stochastic cooling 

 

ELECTRON VELOCITY PROFILE 
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Proton-Beam 
Elektron-Beam 

ELECTRON VELOCITY PROFILE 
Method: electron velocity distribution probing with the proton beam 
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 Electron gun optimized to cooling rate 

 Cooled proton beam (pencil beam) 

 Electron orbit shifts 
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Schottky-Spectrum 

ELECTRON VELOCITY PROFILE 
Method: electron velocity distribution probing with the proton beam 
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 Electron gun optimized to cooling rate 

 Cooled proton beam (pencil beam) 

 Electron orbit shifts 

 Schottky measurement 

 Frequency as function of beam position 

 

 



ELECTRON VELOCITY PROFILE 
Method: electron velocity distribution probing with the proton beam 
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 Electron gun optimized to cooling rate 

 Cooled proton beam (pencil beam) 

 Electron orbit shifts 

 Schottky measurement 

 Frequency as function of beam position 

 Determination of 𝑣𝑝 = 𝑣𝑒,∥ 

 Velocity profile 

 

 



ELECTRON VELOCITY PROFILE 

 Reduced longitudinal velocity indicates transverse motion 

 Larmor oscillation limits transverse cooling 

 Worst for large proton beams or huge beam offset 

Measurement results 
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𝑈𝑔𝑟𝑖𝑑 = 0.75 kV 
𝑈𝑎𝑛𝑜𝑑𝑒 = 3.8 kV 
𝐼𝑒 = 0.63 A 



ELECTRON VELOCITY PROFILE 

 Can partially be explained by 

galloping/scalloping 

 Not yet considered: 

• Higher order (asymmetric) Larmor 

oscillations due to bends 

• Space charge effects 

• Influence of gun settings (beam 

density profile) 

 

 To be addressed in next beam time 

 

 

 

 

 

 

Comparison to galloping/scalloping effects 
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SUMMARY 

 EPICS integration of the cooler and related beam control systems 

 Central archiving for easy data analysis and correlation 

 System integration and automated control with ramp editor 
 

 Electron cooling with stochastic emittance pre-cooling 

 Significantly faster cooling and lower equilibrium momentum uncertainty 

 Advantages of both systems combined 
 

 Electron velocity profile measured 

 Limits cooling performance especially for large-diameter proton beams 

 Can partially be explained by galloping/scalloping 
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OUTLOOK 
Plans for the next beam time 

 Schottky spectrum artefact for combined SC and EC 

 Identify cause 

 Study of transverse cooling process 

 Detailed study of electron velocity profile 

 Electron temperature (recombination study), beam spectra 

 Solenoid field straightness 

 Larmor compensation on model basis 

 EPICS based control of electron cooler 

 Further automation 

 Usage of data across systems 
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